1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
/* fotest.c: FAIL-OVER TEST
*
* $Id$
* Copyright (c) 2001-2020 Ravenbrook Limited. See end of file for license.
* Portions copyright (C) 2002 Global Graphics Software.
*
* This tests fail-over behaviour in low memory situations. The MVFF
* and MVT pool classes normally maintain their list of free blocks in
* a Coalescing Block Structure (CBS), but if the CBS cannot handle a
* request due to running out of memory, they fall back to a Freelist
* (which has zero memory overhead, at some cost in performance).
*
* This is a white box test: it monkey-patches the MFS pool's alloc
* method with a method that always returns a memory error code.
*/
#include "mpscmvff.h"
#include "mpscmvt.h"
#include "mpsavm.h"
#include "testlib.h"
#include "cbs.h"
#include "mpm.h"
#include "mpmst.h"
#include "mpmtypes.h"
#include "poolmfs.h"
#include <stdio.h> /* printf */
#define testArenaSIZE ((((size_t)3)<<24) - 4)
#define testSetSIZE 200 /* TODO: 10 * arena grain size / sizeof cbs_struct */
#define testLOOPS 10
/* make -- allocate one object */
static mps_res_t make(mps_addr_t *p, mps_ap_t ap, size_t size)
{
mps_res_t res;
do {
MPS_RESERVE_BLOCK(res, *p, ap, size);
if(res != MPS_RES_OK)
return res;
} while(!mps_commit(ap, *p, size));
return MPS_RES_OK;
}
/* The original alloc method on the MFS pool. */
static PoolAllocMethod mfs_alloc;
/* Are we currently in a part of the test that is allowed to fail in the case
* where we run out of memory? This controls the behaviour of oomAlloc. */
static Bool simulate_allocation_failure = FALSE;
/* How many times has oomAlloc failed on purpose. */
static unsigned long failure_count = 0;
/* oomAlloc -- allocation function that reliably fails
*
* Returns a randomly chosen memory error code (and increments
* `failure_count`) if `simulate_allocation_failure`. The point is to verify
* that none of these errors affects the caller. */
static Res oomAlloc(Addr *pReturn, Pool pool, Size size)
{
if (simulate_allocation_failure) {
/* Simulate a single failure in order to enforce the fail-over behaviour. */
++ failure_count;
simulate_allocation_failure = 0;
switch (rnd() % 3) {
case 0:
return ResRESOURCE;
case 1:
return ResMEMORY;
default:
return ResCOMMIT_LIMIT;
}
} else {
/* Failure here is allowed, so attempt allocation as normal.
* (see job004041 and job004104). */
return mfs_alloc(pReturn, pool, size);
}
}
/* stress -- create an allocation point and allocate in it */
static mps_res_t stress(size_t (*size)(unsigned long, mps_align_t),
mps_align_t alignment, mps_pool_t pool)
{
mps_res_t res = MPS_RES_OK;
mps_ap_t ap;
unsigned long i, k;
int *ps[testSetSIZE];
size_t ss[testSetSIZE];
die(mps_ap_create(&ap, pool, mps_rank_exact()), "BufferCreate");
/* allocate a load of objects */
for (i=0; i<testSetSIZE; ++i) {
mps_addr_t obj;
ss[i] = (*size)(i, alignment);
res = make(&obj, ap, ss[i]);
if (res != MPS_RES_OK)
goto allocFail;
ps[i] = obj;
if (ss[i] >= sizeof(ps[i]))
*ps[i] = 1; /* Write something, so it gets swap. */
}
failure_count = 0;
for (k=0; k<testLOOPS; ++k) {
/* Use oomAlloc for the first iteration and then with 0.5 probability. */
CLASS_STATIC(MFSPool).alloc = (k>0 && rnd() % 2) ? mfs_alloc : oomAlloc;
/* shuffle all the objects */
for (i=0; i<testSetSIZE; ++i) {
unsigned long j = i + rnd()%(testSetSIZE-i);
void *tp;
size_t ts;
tp = ps[j]; ts = ss[j];
ps[j] = ps[i]; ss[j] = ss[i];
ps[i] = tp; ss[i] = ts;
}
/* free half of the objects */
/* upper half, as when allocating them again we want smaller objects */
/* see randomSize() */
for (i=testSetSIZE/2; i<testSetSIZE; ++i) {
simulate_allocation_failure = TRUE;
mps_free(pool, (mps_addr_t)ps[i], ss[i]);
simulate_allocation_failure = FALSE;
/* if (i == testSetSIZE/2) */
/* PoolDescribe((Pool)pool, mps_lib_stdout); */
}
/* allocate some new objects */
for (i=testSetSIZE/2; i<testSetSIZE; ++i) {
mps_addr_t obj;
ss[i] = (*size)(i, alignment);
res = make(&obj, ap, ss[i]);
if (res != MPS_RES_OK)
goto allocFail;
ps[i] = obj;
}
}
CLASS_STATIC(MFSPool).alloc = mfs_alloc;
Insist(failure_count > 0);
allocFail:
mps_ap_destroy(ap);
return res;
}
/* randomSizeAligned -- produce sizes both large and small,
* aligned by platform alignment */
static size_t randomSizeAligned(unsigned long i, mps_align_t alignment)
{
size_t maxSize = 2 * 160 * 0x2000;
/* Reduce by a factor of 2 every 10 cycles. Total allocation about 40 MB. */
return alignUp(rnd() % max((maxSize >> (i / 10)), 2) + 1, alignment);
}
int main(int argc, char *argv[])
{
mps_arena_t arena;
mps_pool_t pool;
mps_align_t alignment;
testlib_init(argc, argv);
die(mps_arena_create(&arena, mps_arena_class_vm(), testArenaSIZE),
"mps_arena_create");
mfs_alloc = CLASS_STATIC(MFSPool).alloc;
alignment = sizeof(void *) << (rnd() % 4);
MPS_ARGS_BEGIN(args) {
MPS_ARGS_ADD(args, MPS_KEY_EXTEND_BY, (64 + rnd() % 64) * 1024);
MPS_ARGS_ADD(args, MPS_KEY_MEAN_SIZE, (1 + rnd() % 8) * 8);
MPS_ARGS_ADD(args, MPS_KEY_ALIGN, alignment);
MPS_ARGS_ADD(args, MPS_KEY_MVFF_ARENA_HIGH, rnd() % 2);
MPS_ARGS_ADD(args, MPS_KEY_MVFF_SLOT_HIGH, rnd() % 2);
MPS_ARGS_ADD(args, MPS_KEY_MVFF_FIRST_FIT, rnd() % 2);
die(mps_pool_create_k(&pool, arena, mps_class_mvff(), args), "create MVFF");
} MPS_ARGS_END(args);
die(stress(randomSizeAligned, alignment, pool), "stress MVFF");
mps_pool_destroy(pool);
mps_arena_destroy(arena);
die(mps_arena_create(&arena, mps_arena_class_vm(), testArenaSIZE),
"mps_arena_create");
alignment = sizeof(void *) << (rnd() % 4);
MPS_ARGS_BEGIN(args) {
MPS_ARGS_ADD(args, MPS_KEY_ALIGN, alignment);
MPS_ARGS_ADD(args, MPS_KEY_MIN_SIZE, (1 + rnd() % 4) * 4);
MPS_ARGS_ADD(args, MPS_KEY_MEAN_SIZE, (1 + rnd() % 8) * 16);
MPS_ARGS_ADD(args, MPS_KEY_MAX_SIZE, (1 + rnd() % 4) * 1024);
MPS_ARGS_ADD(args, MPS_KEY_MVT_RESERVE_DEPTH, (1 + rnd() % 64) * 16);
MPS_ARGS_ADD(args, MPS_KEY_MVT_FRAG_LIMIT, (rnd() % 101) / 100.0);
die(mps_pool_create_k(&pool, arena, mps_class_mvt(), args), "create MVT");
} MPS_ARGS_END(args);
die(stress(randomSizeAligned, alignment, pool), "stress MVT");
mps_pool_destroy(pool);
mps_arena_destroy(arena);
printf("%s: Conclusion: Failed to find any defects.\n", argv[0]);
return 0;
}
/* C. COPYRIGHT AND LICENSE
*
* Copyright (C) 2001-2020 Ravenbrook Limited <https://www.ravenbrook.com/>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
|