diff options
| author | Joseph Arceneaux | 1992-09-17 02:26:53 +0000 |
|---|---|---|
| committer | Joseph Arceneaux | 1992-09-17 02:26:53 +0000 |
| commit | a50699fdb42601f1c5636fb111fd5b860313eb51 (patch) | |
| tree | b3588f4e288d7846783f9d5a3f2b270f70c61554 /src | |
| parent | 614517afd8f150108189c432475b03ca7de476b6 (diff) | |
| download | emacs-a50699fdb42601f1c5636fb111fd5b860313eb51.tar.gz emacs-a50699fdb42601f1c5636fb111fd5b860313eb51.zip | |
Initial revision
Diffstat (limited to 'src')
| -rw-r--r-- | src/intervals.c | 1529 |
1 files changed, 1529 insertions, 0 deletions
diff --git a/src/intervals.c b/src/intervals.c new file mode 100644 index 00000000000..8a985199f8e --- /dev/null +++ b/src/intervals.c | |||
| @@ -0,0 +1,1529 @@ | |||
| 1 | /* Code for doing intervals. | ||
| 2 | Copyright (C) 1991, 1992 Free Software Foundation, Inc. | ||
| 3 | |||
| 4 | This file is part of GNU Emacs. | ||
| 5 | |||
| 6 | GNU Emacs is free software; you can redistribute it and/or modify | ||
| 7 | it under the terms of the GNU General Public License as published by | ||
| 8 | the Free Software Foundation; either version 1, or (at your option) | ||
| 9 | any later version. | ||
| 10 | |||
| 11 | GNU Emacs is distributed in the hope that it will be useful, | ||
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | GNU General Public License for more details. | ||
| 15 | |||
| 16 | You should have received a copy of the GNU General Public License | ||
| 17 | along with GNU Emacs; see the file COPYING. If not, write to | ||
| 18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | ||
| 19 | |||
| 20 | |||
| 21 | /* NOTES: | ||
| 22 | |||
| 23 | Have to ensure that we can't put symbol nil on a plist, or some | ||
| 24 | functions may work incorrectly. | ||
| 25 | |||
| 26 | An idea: Have the owner of the tree keep count of splits and/or | ||
| 27 | insertion lengths (in intervals), and balance after every N. | ||
| 28 | |||
| 29 | Need to call *_left_hook when buffer is killed. | ||
| 30 | |||
| 31 | Scan for zero-length, or 0-length to see notes about handling | ||
| 32 | zero length interval-markers. | ||
| 33 | |||
| 34 | There are comments around about freeing intervals. It might be | ||
| 35 | faster to explicitly free them (put them on the free list) than | ||
| 36 | to GC them. | ||
| 37 | |||
| 38 | */ | ||
| 39 | |||
| 40 | |||
| 41 | #include "config.h" | ||
| 42 | #include "lisp.h" | ||
| 43 | #include "intervals.h" | ||
| 44 | #include "buffer.h" | ||
| 45 | #include "screen.h" | ||
| 46 | |||
| 47 | /* Factor for weight-balancing interval trees. */ | ||
| 48 | Lisp_Object interval_balance_threshold; | ||
| 49 | |||
| 50 | /* Utility functions for intervals. */ | ||
| 51 | |||
| 52 | |||
| 53 | /* Create the root interval of some object, a buffer or string. */ | ||
| 54 | |||
| 55 | INTERVAL | ||
| 56 | create_root_interval (parent) | ||
| 57 | Lisp_Object parent; | ||
| 58 | { | ||
| 59 | INTERVAL new = make_interval (); | ||
| 60 | |||
| 61 | if (XTYPE (parent) == Lisp_Buffer) | ||
| 62 | { | ||
| 63 | new->total_length = BUF_Z (XBUFFER (parent)) - 1; | ||
| 64 | XBUFFER (parent)->intervals = new; | ||
| 65 | } | ||
| 66 | else if (XTYPE (parent) == Lisp_String) | ||
| 67 | { | ||
| 68 | new->total_length = XSTRING (parent)->size; | ||
| 69 | XSTRING (parent)->intervals = new; | ||
| 70 | } | ||
| 71 | |||
| 72 | new->parent = (INTERVAL) parent; | ||
| 73 | new->position = 1; | ||
| 74 | |||
| 75 | return new; | ||
| 76 | } | ||
| 77 | |||
| 78 | /* Make the interval TARGET have exactly the properties of SOURCE */ | ||
| 79 | |||
| 80 | void | ||
| 81 | copy_properties (source, target) | ||
| 82 | register INTERVAL source, target; | ||
| 83 | { | ||
| 84 | if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target)) | ||
| 85 | return; | ||
| 86 | |||
| 87 | COPY_INTERVAL_CACHE (source, target); | ||
| 88 | target->plist = Fcopy_sequence (source->plist); | ||
| 89 | } | ||
| 90 | |||
| 91 | /* Merge the properties of interval SOURCE into the properties | ||
| 92 | of interval TARGET. */ | ||
| 93 | |||
| 94 | static void | ||
| 95 | merge_properties (source, target) | ||
| 96 | register INTERVAL source, target; | ||
| 97 | { | ||
| 98 | register Lisp_Object o, sym, val; | ||
| 99 | |||
| 100 | if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target)) | ||
| 101 | return; | ||
| 102 | |||
| 103 | MERGE_INTERVAL_CACHE (source, target); | ||
| 104 | |||
| 105 | o = source->plist; | ||
| 106 | while (! EQ (o, Qnil)) | ||
| 107 | { | ||
| 108 | sym = Fcar (o); | ||
| 109 | val = Fmemq (sym, target->plist); | ||
| 110 | |||
| 111 | if (NILP (val)) | ||
| 112 | { | ||
| 113 | o = Fcdr (o); | ||
| 114 | val = Fcar (o); | ||
| 115 | target->plist = Fcons (sym, Fcons (val, target->plist)); | ||
| 116 | o = Fcdr (o); | ||
| 117 | } | ||
| 118 | else | ||
| 119 | o = Fcdr (Fcdr (o)); | ||
| 120 | } | ||
| 121 | } | ||
| 122 | |||
| 123 | /* Return 1 if the two intervals have the same properties, | ||
| 124 | 0 otherwise. */ | ||
| 125 | |||
| 126 | int | ||
| 127 | intervals_equal (i0, i1) | ||
| 128 | INTERVAL i0, i1; | ||
| 129 | { | ||
| 130 | register Lisp_Object i0_cdr, i0_sym, i1_val; | ||
| 131 | register i1_len; | ||
| 132 | |||
| 133 | if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1)) | ||
| 134 | return 1; | ||
| 135 | |||
| 136 | i1_len = XFASTINT (Flength (i1->plist)); | ||
| 137 | if (i1_len & 0x1) /* Paranoia -- plists are always even */ | ||
| 138 | abort (); | ||
| 139 | i1_len /= 2; | ||
| 140 | i0_cdr = i0->plist; | ||
| 141 | while (!NILP (i0_cdr)) | ||
| 142 | { | ||
| 143 | /* Lengths of the two plists were unequal */ | ||
| 144 | if (i1_len == 0) | ||
| 145 | return 0; | ||
| 146 | |||
| 147 | i0_sym = Fcar (i0_cdr); | ||
| 148 | i1_val = Fmemq (i0_sym, i1->plist); | ||
| 149 | |||
| 150 | /* i0 has something i1 doesn't */ | ||
| 151 | if (EQ (i1_val, Qnil)) | ||
| 152 | return 0; | ||
| 153 | |||
| 154 | /* i0 and i1 both have sym, but it has different values in each */ | ||
| 155 | i0_cdr = Fcdr (i0_cdr); | ||
| 156 | if (! Fequal (i1_val, Fcar (i0_cdr))) | ||
| 157 | return 0; | ||
| 158 | |||
| 159 | i0_cdr = Fcdr (i0_cdr); | ||
| 160 | i1_len--; | ||
| 161 | } | ||
| 162 | |||
| 163 | /* Lengths of the two plists were unequal */ | ||
| 164 | if (i1_len > 0) | ||
| 165 | return 0; | ||
| 166 | |||
| 167 | return 1; | ||
| 168 | } | ||
| 169 | |||
| 170 | static int icount; | ||
| 171 | static int idepth; | ||
| 172 | static int zero_length; | ||
| 173 | |||
| 174 | static int depth; | ||
| 175 | |||
| 176 | /* Traverse an interval tree TREE, performing FUNCTION on each node. | ||
| 177 | |||
| 178 | Perhaps we should pass the depth as an argument. */ | ||
| 179 | |||
| 180 | void | ||
| 181 | traverse_intervals (tree, position, function) | ||
| 182 | INTERVAL tree; | ||
| 183 | int position; | ||
| 184 | void (* function) (); | ||
| 185 | { | ||
| 186 | if (NULL_INTERVAL_P (tree)) | ||
| 187 | return; | ||
| 188 | |||
| 189 | depth++; | ||
| 190 | traverse_intervals (tree->left, position, function); | ||
| 191 | position += LEFT_TOTAL_LENGTH (tree); | ||
| 192 | tree->position = position; | ||
| 193 | (*function) (tree); | ||
| 194 | position += LENGTH (tree); | ||
| 195 | traverse_intervals (tree->right, position, function); | ||
| 196 | depth--; | ||
| 197 | } | ||
| 198 | |||
| 199 | #if 0 | ||
| 200 | /* These functions are temporary, for debugging purposes only. */ | ||
| 201 | |||
| 202 | INTERVAL search_interval, found_interval; | ||
| 203 | |||
| 204 | void | ||
| 205 | check_for_interval (i) | ||
| 206 | register INTERVAL i; | ||
| 207 | { | ||
| 208 | if (i == search_interval) | ||
| 209 | { | ||
| 210 | found_interval = i; | ||
| 211 | icount++; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | |||
| 215 | INTERVAL | ||
| 216 | search_for_interval (i, tree) | ||
| 217 | register INTERVAL i, tree; | ||
| 218 | { | ||
| 219 | icount = 0; | ||
| 220 | search_interval = i; | ||
| 221 | found_interval = NULL_INTERVAL; | ||
| 222 | traverse_intervals (tree, 1, &check_for_interval); | ||
| 223 | return found_interval; | ||
| 224 | } | ||
| 225 | |||
| 226 | static void | ||
| 227 | inc_interval_count (i) | ||
| 228 | INTERVAL i; | ||
| 229 | { | ||
| 230 | icount++; | ||
| 231 | if (LENGTH (i) == 0) | ||
| 232 | zero_length++; | ||
| 233 | if (depth > idepth) | ||
| 234 | idepth = depth; | ||
| 235 | } | ||
| 236 | |||
| 237 | int | ||
| 238 | count_intervals (i) | ||
| 239 | register INTERVAL i; | ||
| 240 | { | ||
| 241 | icount = 0; | ||
| 242 | idepth = 0; | ||
| 243 | zero_length = 0; | ||
| 244 | traverse_intervals (i, 1, &inc_interval_count); | ||
| 245 | |||
| 246 | return icount; | ||
| 247 | } | ||
| 248 | |||
| 249 | static INTERVAL | ||
| 250 | root_interval (interval) | ||
| 251 | INTERVAL interval; | ||
| 252 | { | ||
| 253 | register INTERVAL i = interval; | ||
| 254 | |||
| 255 | while (! ROOT_INTERVAL_P (i)) | ||
| 256 | i = i->parent; | ||
| 257 | |||
| 258 | return i; | ||
| 259 | } | ||
| 260 | #endif | ||
| 261 | |||
| 262 | /* Assuming that a left child exists, perform the following operation: | ||
| 263 | |||
| 264 | A B | ||
| 265 | / \ / \ | ||
| 266 | B => A | ||
| 267 | / \ / \ | ||
| 268 | c c | ||
| 269 | */ | ||
| 270 | |||
| 271 | static INTERVAL | ||
| 272 | rotate_right (interval) | ||
| 273 | INTERVAL interval; | ||
| 274 | { | ||
| 275 | INTERVAL i; | ||
| 276 | INTERVAL B = interval->left; | ||
| 277 | int len = LENGTH (interval); | ||
| 278 | |||
| 279 | /* Deal with any Parent of A; make it point to B. */ | ||
| 280 | if (! ROOT_INTERVAL_P (interval)) | ||
| 281 | if (AM_LEFT_CHILD (interval)) | ||
| 282 | interval->parent->left = interval->left; | ||
| 283 | else | ||
| 284 | interval->parent->right = interval->left; | ||
| 285 | interval->left->parent = interval->parent; | ||
| 286 | |||
| 287 | /* B gets the same length as A, since it get A's position in the tree. */ | ||
| 288 | interval->left->total_length = interval->total_length; | ||
| 289 | |||
| 290 | /* B becomes the parent of A. */ | ||
| 291 | i = interval->left->right; | ||
| 292 | interval->left->right = interval; | ||
| 293 | interval->parent = interval->left; | ||
| 294 | |||
| 295 | /* A gets c as left child. */ | ||
| 296 | interval->left = i; | ||
| 297 | if (! NULL_INTERVAL_P (i)) | ||
| 298 | i->parent = interval; | ||
| 299 | interval->total_length = (len + LEFT_TOTAL_LENGTH (interval) | ||
| 300 | + RIGHT_TOTAL_LENGTH (interval)); | ||
| 301 | |||
| 302 | return B; | ||
| 303 | } | ||
| 304 | |||
| 305 | /* Assuming that a right child exists, perform the following operation: | ||
| 306 | |||
| 307 | A B | ||
| 308 | / \ / \ | ||
| 309 | B => A | ||
| 310 | / \ / \ | ||
| 311 | c c | ||
| 312 | */ | ||
| 313 | |||
| 314 | static INTERVAL | ||
| 315 | rotate_left (interval) | ||
| 316 | INTERVAL interval; | ||
| 317 | { | ||
| 318 | INTERVAL i; | ||
| 319 | INTERVAL B = interval->right; | ||
| 320 | int len = LENGTH (interval); | ||
| 321 | |||
| 322 | /* Deal with the parent of A. */ | ||
| 323 | if (! ROOT_INTERVAL_P (interval)) | ||
| 324 | if (AM_LEFT_CHILD (interval)) | ||
| 325 | interval->parent->left = interval->right; | ||
| 326 | else | ||
| 327 | interval->parent->right = interval->right; | ||
| 328 | interval->right->parent = interval->parent; | ||
| 329 | |||
| 330 | /* B must have the same total length of A. */ | ||
| 331 | interval->right->total_length = interval->total_length; | ||
| 332 | |||
| 333 | /* Make B the parent of A */ | ||
| 334 | i = interval->right->left; | ||
| 335 | interval->right->left = interval; | ||
| 336 | interval->parent = interval->right; | ||
| 337 | |||
| 338 | /* Make A point to c */ | ||
| 339 | interval->right = i; | ||
| 340 | if (! NULL_INTERVAL_P (i)) | ||
| 341 | i->parent = interval; | ||
| 342 | interval->total_length = (len + LEFT_TOTAL_LENGTH (interval) | ||
| 343 | + RIGHT_TOTAL_LENGTH (interval)); | ||
| 344 | |||
| 345 | return B; | ||
| 346 | } | ||
| 347 | |||
| 348 | /* Split an interval into two. The second (RIGHT) half is returned as | ||
| 349 | the new interval. The size and position of the interval being split are | ||
| 350 | stored within it, having been found by find_interval (). The properties | ||
| 351 | are reset; it is up to the caller to do the right thing. | ||
| 352 | |||
| 353 | Note that this does not change the position of INTERVAL; if it is a root, | ||
| 354 | it is still a root after this operation. */ | ||
| 355 | |||
| 356 | INTERVAL | ||
| 357 | split_interval_right (interval, relative_position) | ||
| 358 | INTERVAL interval; | ||
| 359 | int relative_position; | ||
| 360 | { | ||
| 361 | INTERVAL new = make_interval (); | ||
| 362 | int position = interval->position; | ||
| 363 | int new_length = LENGTH (interval) - relative_position + 1; | ||
| 364 | |||
| 365 | new->position = position + relative_position - 1; | ||
| 366 | new->parent = interval; | ||
| 367 | #if 0 | ||
| 368 | copy_properties (interval, new); | ||
| 369 | #endif | ||
| 370 | |||
| 371 | if (LEAF_INTERVAL_P (interval) || NULL_RIGHT_CHILD (interval)) | ||
| 372 | { | ||
| 373 | interval->right = new; | ||
| 374 | new->total_length = new_length; | ||
| 375 | |||
| 376 | return new; | ||
| 377 | } | ||
| 378 | |||
| 379 | /* Insert the new node between INTERVAL and its right child. */ | ||
| 380 | new->right = interval->right; | ||
| 381 | interval->right->parent = new; | ||
| 382 | interval->right = new; | ||
| 383 | |||
| 384 | new->total_length = new_length + new->right->total_length; | ||
| 385 | |||
| 386 | return new; | ||
| 387 | } | ||
| 388 | |||
| 389 | /* Split an interval into two. The first (LEFT) half is returned as | ||
| 390 | the new interval. The size and position of the interval being split | ||
| 391 | are stored within it, having been found by find_interval (). The | ||
| 392 | properties are reset; it is up to the caller to do the right thing. | ||
| 393 | |||
| 394 | Note that this does not change the position of INTERVAL in the tree; if it | ||
| 395 | is a root, it is still a root after this operation. */ | ||
| 396 | |||
| 397 | INTERVAL | ||
| 398 | split_interval_left (interval, relative_position) | ||
| 399 | INTERVAL interval; | ||
| 400 | int relative_position; | ||
| 401 | { | ||
| 402 | INTERVAL new = make_interval (); | ||
| 403 | int position = interval->position; | ||
| 404 | int new_length = relative_position - 1; | ||
| 405 | |||
| 406 | #if 0 | ||
| 407 | copy_properties (interval, new); | ||
| 408 | #endif | ||
| 409 | |||
| 410 | new->position = interval->position; | ||
| 411 | |||
| 412 | interval->position = interval->position + relative_position - 1; | ||
| 413 | new->parent = interval; | ||
| 414 | |||
| 415 | if (NULL_LEFT_CHILD (interval)) | ||
| 416 | { | ||
| 417 | interval->left = new; | ||
| 418 | new->total_length = new_length; | ||
| 419 | |||
| 420 | return new; | ||
| 421 | } | ||
| 422 | |||
| 423 | /* Insert the new node between INTERVAL and its left child. */ | ||
| 424 | new->left = interval->left; | ||
| 425 | new->left->parent = new; | ||
| 426 | interval->left = new; | ||
| 427 | new->total_length = LENGTH (new) + LEFT_TOTAL_LENGTH (new); | ||
| 428 | |||
| 429 | return new; | ||
| 430 | } | ||
| 431 | |||
| 432 | /* Find the interval containing POSITION in TREE. POSITION is relative | ||
| 433 | to the start of TREE. */ | ||
| 434 | |||
| 435 | INTERVAL | ||
| 436 | find_interval (tree, position) | ||
| 437 | register INTERVAL tree; | ||
| 438 | register int position; | ||
| 439 | { | ||
| 440 | register int relative_position = position; | ||
| 441 | |||
| 442 | if (NULL_INTERVAL_P (tree)) | ||
| 443 | return NULL_INTERVAL; | ||
| 444 | |||
| 445 | if (position > TOTAL_LENGTH (tree)) | ||
| 446 | abort (); /* Paranoia */ | ||
| 447 | #if 0 | ||
| 448 | position = TOTAL_LENGTH (tree); | ||
| 449 | #endif | ||
| 450 | |||
| 451 | while (1) | ||
| 452 | { | ||
| 453 | if (relative_position <= LEFT_TOTAL_LENGTH (tree)) | ||
| 454 | { | ||
| 455 | tree = tree->left; | ||
| 456 | } | ||
| 457 | else if (relative_position > (TOTAL_LENGTH (tree) | ||
| 458 | - RIGHT_TOTAL_LENGTH (tree))) | ||
| 459 | { | ||
| 460 | relative_position -= (TOTAL_LENGTH (tree) | ||
| 461 | - RIGHT_TOTAL_LENGTH (tree)); | ||
| 462 | tree = tree->right; | ||
| 463 | } | ||
| 464 | else | ||
| 465 | { | ||
| 466 | tree->position = LEFT_TOTAL_LENGTH (tree) | ||
| 467 | + position - relative_position + 1; | ||
| 468 | return tree; | ||
| 469 | } | ||
| 470 | } | ||
| 471 | } | ||
| 472 | |||
| 473 | /* Find the succeeding interval (lexicographically) to INTERVAL. | ||
| 474 | Sets the `position' field based on that of INTERVAL. | ||
| 475 | |||
| 476 | Note that those values are only correct if they were also correct | ||
| 477 | in INTERVAL. */ | ||
| 478 | |||
| 479 | INTERVAL | ||
| 480 | next_interval (interval) | ||
| 481 | register INTERVAL interval; | ||
| 482 | { | ||
| 483 | register INTERVAL i = interval; | ||
| 484 | register int next_position; | ||
| 485 | |||
| 486 | if (NULL_INTERVAL_P (i)) | ||
| 487 | return NULL_INTERVAL; | ||
| 488 | next_position = interval->position + LENGTH (interval); | ||
| 489 | |||
| 490 | if (! NULL_RIGHT_CHILD (i)) | ||
| 491 | { | ||
| 492 | i = i->right; | ||
| 493 | while (! NULL_LEFT_CHILD (i)) | ||
| 494 | i = i->left; | ||
| 495 | |||
| 496 | i->position = next_position; | ||
| 497 | return i; | ||
| 498 | } | ||
| 499 | |||
| 500 | while (! NULL_PARENT (i)) | ||
| 501 | { | ||
| 502 | if (AM_LEFT_CHILD (i)) | ||
| 503 | { | ||
| 504 | i = i->parent; | ||
| 505 | i->position = next_position; | ||
| 506 | return i; | ||
| 507 | } | ||
| 508 | |||
| 509 | i = i->parent; | ||
| 510 | } | ||
| 511 | |||
| 512 | return NULL_INTERVAL; | ||
| 513 | } | ||
| 514 | |||
| 515 | /* Find the preceding interval (lexicographically) to INTERVAL. | ||
| 516 | Sets the `position' field based on that of INTERVAL. | ||
| 517 | |||
| 518 | Note that those values are only correct if they were also correct | ||
| 519 | in INTERVAL. */ | ||
| 520 | |||
| 521 | INTERVAL | ||
| 522 | previous_interval (interval) | ||
| 523 | register INTERVAL interval; | ||
| 524 | { | ||
| 525 | register INTERVAL i; | ||
| 526 | register position_of_previous; | ||
| 527 | |||
| 528 | if (NULL_INTERVAL_P (interval)) | ||
| 529 | return NULL_INTERVAL; | ||
| 530 | |||
| 531 | if (! NULL_LEFT_CHILD (interval)) | ||
| 532 | { | ||
| 533 | i = interval->left; | ||
| 534 | while (! NULL_RIGHT_CHILD (i)) | ||
| 535 | i = i->right; | ||
| 536 | |||
| 537 | i->position = interval->position - LENGTH (i); | ||
| 538 | return i; | ||
| 539 | } | ||
| 540 | |||
| 541 | i = interval; | ||
| 542 | while (! NULL_PARENT (i)) | ||
| 543 | { | ||
| 544 | if (AM_RIGHT_CHILD (i)) | ||
| 545 | { | ||
| 546 | i = i->parent; | ||
| 547 | |||
| 548 | i->position = interval->position - LENGTH (i); | ||
| 549 | return i; | ||
| 550 | } | ||
| 551 | i = i->parent; | ||
| 552 | } | ||
| 553 | |||
| 554 | return NULL_INTERVAL; | ||
| 555 | } | ||
| 556 | |||
| 557 | /* Traverse a path down the interval tree TREE to the interval | ||
| 558 | containing POSITION, adjusting all nodes on the path for | ||
| 559 | an addition of LENGTH characters. Insertion between two intervals | ||
| 560 | (i.e., point == i->position, where i is second interval) means | ||
| 561 | text goes into second interval. | ||
| 562 | |||
| 563 | Modifications are needed to handle the hungry bits -- after simply | ||
| 564 | finding the interval at position (don't add length going down), | ||
| 565 | if it's the beginning of the interval, get the previous interval | ||
| 566 | and check the hugry bits of both. Then add the length going back up | ||
| 567 | to the root. */ | ||
| 568 | |||
| 569 | static INTERVAL | ||
| 570 | adjust_intervals_for_insertion (tree, position, length) | ||
| 571 | INTERVAL tree; | ||
| 572 | int position, length; | ||
| 573 | { | ||
| 574 | register int relative_position; | ||
| 575 | register INTERVAL this; | ||
| 576 | |||
| 577 | if (TOTAL_LENGTH (tree) == 0) /* Paranoia */ | ||
| 578 | abort (); | ||
| 579 | |||
| 580 | /* If inserting at point-max of a buffer, that position | ||
| 581 | will be out of range */ | ||
| 582 | if (position > TOTAL_LENGTH (tree)) | ||
| 583 | position = TOTAL_LENGTH (tree); | ||
| 584 | relative_position = position; | ||
| 585 | this = tree; | ||
| 586 | |||
| 587 | while (1) | ||
| 588 | { | ||
| 589 | if (relative_position <= LEFT_TOTAL_LENGTH (this)) | ||
| 590 | { | ||
| 591 | this->total_length += length; | ||
| 592 | this = this->left; | ||
| 593 | } | ||
| 594 | else if (relative_position > (TOTAL_LENGTH (this) | ||
| 595 | - RIGHT_TOTAL_LENGTH (this))) | ||
| 596 | { | ||
| 597 | relative_position -= (TOTAL_LENGTH (this) | ||
| 598 | - RIGHT_TOTAL_LENGTH (this)); | ||
| 599 | this->total_length += length; | ||
| 600 | this = this->right; | ||
| 601 | } | ||
| 602 | else | ||
| 603 | { | ||
| 604 | /* If we are to use zero-length intervals as buffer pointers, | ||
| 605 | then this code will have to change. */ | ||
| 606 | this->total_length += length; | ||
| 607 | this->position = LEFT_TOTAL_LENGTH (this) | ||
| 608 | + position - relative_position + 1; | ||
| 609 | return tree; | ||
| 610 | } | ||
| 611 | } | ||
| 612 | } | ||
| 613 | |||
| 614 | /* Merge interval I with its lexicographic successor. Note that | ||
| 615 | this does not deal with the properties, or delete I. */ | ||
| 616 | |||
| 617 | INTERVAL | ||
| 618 | merge_interval_right (i) | ||
| 619 | register INTERVAL i; | ||
| 620 | { | ||
| 621 | register int absorb = LENGTH (i); | ||
| 622 | |||
| 623 | /* Zero out this interval. */ | ||
| 624 | i->total_length -= absorb; | ||
| 625 | |||
| 626 | /* Find the succeeding interval. */ | ||
| 627 | if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb | ||
| 628 | as we descend. */ | ||
| 629 | { | ||
| 630 | i = i->right; | ||
| 631 | while (! NULL_LEFT_CHILD (i)) | ||
| 632 | { | ||
| 633 | i->total_length += absorb; | ||
| 634 | i = i->left; | ||
| 635 | } | ||
| 636 | |||
| 637 | i->total_length += absorb; | ||
| 638 | return i; | ||
| 639 | } | ||
| 640 | |||
| 641 | while (! NULL_PARENT (i)) /* It's above us. Subtract as | ||
| 642 | we ascend. */ | ||
| 643 | { | ||
| 644 | if (AM_LEFT_CHILD (i)) | ||
| 645 | { | ||
| 646 | i = i->parent; | ||
| 647 | return i; | ||
| 648 | } | ||
| 649 | |||
| 650 | i = i->parent; | ||
| 651 | i->total_length -= absorb; | ||
| 652 | } | ||
| 653 | |||
| 654 | return NULL_INTERVAL; | ||
| 655 | } | ||
| 656 | |||
| 657 | /* Merge interval I with its lexicographic predecessor. Note that | ||
| 658 | this does not deal with the properties, or delete I.*/ | ||
| 659 | |||
| 660 | INTERVAL | ||
| 661 | merge_interval_left (i) | ||
| 662 | register INTERVAL i; | ||
| 663 | { | ||
| 664 | register int absorb = LENGTH (i); | ||
| 665 | |||
| 666 | /* Zero out this interval. */ | ||
| 667 | i->total_length -= absorb; | ||
| 668 | |||
| 669 | /* Find the preceding interval. */ | ||
| 670 | if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down, | ||
| 671 | adding ABSORB as we go. */ | ||
| 672 | { | ||
| 673 | i = i->left; | ||
| 674 | while (! NULL_RIGHT_CHILD (i)) | ||
| 675 | { | ||
| 676 | i->total_length += absorb; | ||
| 677 | i = i->right; | ||
| 678 | } | ||
| 679 | |||
| 680 | i->total_length += absorb; | ||
| 681 | return i; | ||
| 682 | } | ||
| 683 | |||
| 684 | while (! NULL_PARENT (i)) /* It's above us. Go up, | ||
| 685 | subtracting ABSORB. */ | ||
| 686 | { | ||
| 687 | if (AM_RIGHT_CHILD (i)) | ||
| 688 | { | ||
| 689 | i = i->parent; | ||
| 690 | return i; | ||
| 691 | } | ||
| 692 | |||
| 693 | i = i->parent; | ||
| 694 | i->total_length -= absorb; | ||
| 695 | } | ||
| 696 | |||
| 697 | return NULL_INTERVAL; | ||
| 698 | } | ||
| 699 | |||
| 700 | /* Delete an interval node from its btree by merging its subtrees | ||
| 701 | into one subtree which is returned. Caller is responsible for | ||
| 702 | storing the resulting subtree into its parent. */ | ||
| 703 | |||
| 704 | static INTERVAL | ||
| 705 | delete_node (i) | ||
| 706 | register INTERVAL i; | ||
| 707 | { | ||
| 708 | register INTERVAL migrate, this; | ||
| 709 | register int migrate_amt; | ||
| 710 | |||
| 711 | if (NULL_INTERVAL_P (i->left)) | ||
| 712 | return i->right; | ||
| 713 | if (NULL_INTERVAL_P (i->right)) | ||
| 714 | return i->left; | ||
| 715 | |||
| 716 | migrate = i->left; | ||
| 717 | migrate_amt = i->left->total_length; | ||
| 718 | this = i->right; | ||
| 719 | this->total_length += migrate_amt; | ||
| 720 | while (! NULL_INTERVAL_P (this->left)) | ||
| 721 | { | ||
| 722 | this = this->left; | ||
| 723 | this->total_length += migrate_amt; | ||
| 724 | } | ||
| 725 | this->left = migrate; | ||
| 726 | migrate->parent = this; | ||
| 727 | |||
| 728 | return i->right; | ||
| 729 | } | ||
| 730 | |||
| 731 | /* Delete interval I from its tree by calling `delete_node' | ||
| 732 | and properly connecting the resultant subtree. | ||
| 733 | |||
| 734 | I is presumed to be empty; that is, no adjustments are made | ||
| 735 | for the length of I. */ | ||
| 736 | |||
| 737 | void | ||
| 738 | delete_interval (i) | ||
| 739 | register INTERVAL i; | ||
| 740 | { | ||
| 741 | register INTERVAL parent; | ||
| 742 | int amt = LENGTH (i); | ||
| 743 | |||
| 744 | if (amt > 0) /* Only used on zero-length intervals now. */ | ||
| 745 | abort (); | ||
| 746 | |||
| 747 | if (ROOT_INTERVAL_P (i)) | ||
| 748 | { | ||
| 749 | Lisp_Object owner = (Lisp_Object) i->parent; | ||
| 750 | parent = delete_node (i); | ||
| 751 | if (! NULL_INTERVAL_P (parent)) | ||
| 752 | parent->parent = (INTERVAL) owner; | ||
| 753 | |||
| 754 | if (XTYPE (owner) == Lisp_Buffer) | ||
| 755 | XBUFFER (owner)->intervals = parent; | ||
| 756 | else if (XTYPE (owner) == Lisp_String) | ||
| 757 | XSTRING (owner)->intervals = parent; | ||
| 758 | else | ||
| 759 | abort (); | ||
| 760 | |||
| 761 | return; | ||
| 762 | } | ||
| 763 | |||
| 764 | parent = i->parent; | ||
| 765 | if (AM_LEFT_CHILD (i)) | ||
| 766 | { | ||
| 767 | parent->left = delete_node (i); | ||
| 768 | if (! NULL_INTERVAL_P (parent->left)) | ||
| 769 | parent->left->parent = parent; | ||
| 770 | } | ||
| 771 | else | ||
| 772 | { | ||
| 773 | parent->right = delete_node (i); | ||
| 774 | if (! NULL_INTERVAL_P (parent->right)) | ||
| 775 | parent->right->parent = parent; | ||
| 776 | } | ||
| 777 | } | ||
| 778 | |||
| 779 | /* Recurse down to the interval containing FROM. Then delete as much | ||
| 780 | as possible (up to AMOUNT) from that interval, adjusting parental | ||
| 781 | intervals on the way up. If an interval is zeroed out, then | ||
| 782 | it is deleted. | ||
| 783 | |||
| 784 | Returns the amount deleted. */ | ||
| 785 | |||
| 786 | static int | ||
| 787 | interval_deletion_adjustment (tree, from, amount) | ||
| 788 | register INTERVAL tree; | ||
| 789 | register int from, amount; | ||
| 790 | { | ||
| 791 | register int relative_position = from; | ||
| 792 | |||
| 793 | if (NULL_INTERVAL_P (tree)) | ||
| 794 | return 0; | ||
| 795 | |||
| 796 | /* Left branch */ | ||
| 797 | if (relative_position <= LEFT_TOTAL_LENGTH (tree)) | ||
| 798 | { | ||
| 799 | int subtract = interval_deletion_adjustment (tree->left, | ||
| 800 | relative_position, | ||
| 801 | amount); | ||
| 802 | tree->total_length -= subtract; | ||
| 803 | return subtract; | ||
| 804 | } | ||
| 805 | /* Right branch */ | ||
| 806 | else if (relative_position > (TOTAL_LENGTH (tree) | ||
| 807 | - RIGHT_TOTAL_LENGTH (tree))) | ||
| 808 | { | ||
| 809 | int subtract; | ||
| 810 | |||
| 811 | relative_position -= (tree->total_length | ||
| 812 | - RIGHT_TOTAL_LENGTH (tree)); | ||
| 813 | subtract = interval_deletion_adjustment (tree->right, | ||
| 814 | relative_position, | ||
| 815 | amount); | ||
| 816 | tree->total_length -= subtract; | ||
| 817 | return subtract; | ||
| 818 | } | ||
| 819 | /* Here -- this node */ | ||
| 820 | else | ||
| 821 | { | ||
| 822 | /* If this is a zero-length, marker interval, then | ||
| 823 | we must skip it. */ | ||
| 824 | |||
| 825 | if (relative_position == LEFT_TOTAL_LENGTH (tree) + 1) | ||
| 826 | { | ||
| 827 | /* This means we're deleting from the beginning of this interval. */ | ||
| 828 | register int my_amount = LENGTH (tree); | ||
| 829 | |||
| 830 | if (amount < my_amount) | ||
| 831 | { | ||
| 832 | tree->total_length -= amount; | ||
| 833 | return amount; | ||
| 834 | } | ||
| 835 | else | ||
| 836 | { | ||
| 837 | tree->total_length -= my_amount; | ||
| 838 | if (LENGTH (tree) != 0) | ||
| 839 | abort (); /* Paranoia */ | ||
| 840 | |||
| 841 | delete_interval (tree); | ||
| 842 | return my_amount; | ||
| 843 | } | ||
| 844 | } | ||
| 845 | else /* Deleting starting in the middle. */ | ||
| 846 | { | ||
| 847 | register int my_amount = ((tree->total_length | ||
| 848 | - RIGHT_TOTAL_LENGTH (tree)) | ||
| 849 | - relative_position + 1); | ||
| 850 | |||
| 851 | if (amount <= my_amount) | ||
| 852 | { | ||
| 853 | tree->total_length -= amount; | ||
| 854 | return amount; | ||
| 855 | } | ||
| 856 | else | ||
| 857 | { | ||
| 858 | tree->total_length -= my_amount; | ||
| 859 | return my_amount; | ||
| 860 | } | ||
| 861 | } | ||
| 862 | } | ||
| 863 | |||
| 864 | abort (); | ||
| 865 | } | ||
| 866 | |||
| 867 | static void | ||
| 868 | adjust_intervals_for_deletion (buffer, start, length) | ||
| 869 | struct buffer *buffer; | ||
| 870 | int start, length; | ||
| 871 | { | ||
| 872 | register int left_to_delete = length; | ||
| 873 | register INTERVAL tree = buffer->intervals; | ||
| 874 | register int deleted; | ||
| 875 | |||
| 876 | if (NULL_INTERVAL_P (tree)) | ||
| 877 | return; | ||
| 878 | |||
| 879 | if (length == TOTAL_LENGTH (tree)) | ||
| 880 | { | ||
| 881 | buffer->intervals = NULL_INTERVAL; | ||
| 882 | return; | ||
| 883 | } | ||
| 884 | |||
| 885 | if (ONLY_INTERVAL_P (tree)) | ||
| 886 | { | ||
| 887 | tree->total_length -= length; | ||
| 888 | return; | ||
| 889 | } | ||
| 890 | |||
| 891 | if (start > TOTAL_LENGTH (tree)) | ||
| 892 | start = TOTAL_LENGTH (tree); | ||
| 893 | while (left_to_delete > 0) | ||
| 894 | { | ||
| 895 | left_to_delete -= interval_deletion_adjustment (tree, start, | ||
| 896 | left_to_delete); | ||
| 897 | tree = buffer->intervals; | ||
| 898 | if (left_to_delete == tree->total_length) | ||
| 899 | { | ||
| 900 | buffer->intervals = NULL_INTERVAL; | ||
| 901 | return; | ||
| 902 | } | ||
| 903 | } | ||
| 904 | } | ||
| 905 | |||
| 906 | /* Note that all intervals in OBJECT after START have slid by LENGTH. */ | ||
| 907 | |||
| 908 | INLINE void | ||
| 909 | offset_intervals (buffer, start, length) | ||
| 910 | struct buffer *buffer; | ||
| 911 | int start, length; | ||
| 912 | { | ||
| 913 | if (NULL_INTERVAL_P (buffer->intervals) || length == 0) | ||
| 914 | return; | ||
| 915 | |||
| 916 | if (length > 0) | ||
| 917 | adjust_intervals_for_insertion (buffer->intervals, start, length); | ||
| 918 | else | ||
| 919 | adjust_intervals_for_deletion (buffer, start, -length); | ||
| 920 | } | ||
| 921 | |||
| 922 | static INTERVAL | ||
| 923 | reproduce_tree (source, parent) | ||
| 924 | INTERVAL source, parent; | ||
| 925 | { | ||
| 926 | register INTERVAL t = make_interval (); | ||
| 927 | |||
| 928 | bcopy (source, t, INTERVAL_SIZE); | ||
| 929 | copy_properties (source, t); | ||
| 930 | t->parent = parent; | ||
| 931 | if (! NULL_LEFT_CHILD (source)) | ||
| 932 | t->left = reproduce_tree (source->left, t); | ||
| 933 | if (! NULL_RIGHT_CHILD (source)) | ||
| 934 | t->right = reproduce_tree (source->right, t); | ||
| 935 | |||
| 936 | return t; | ||
| 937 | } | ||
| 938 | |||
| 939 | static INTERVAL | ||
| 940 | make_new_interval (intervals, start, length) | ||
| 941 | INTERVAL intervals; | ||
| 942 | int start, length; | ||
| 943 | { | ||
| 944 | INTERVAL slot; | ||
| 945 | |||
| 946 | slot = find_interval (intervals, start); | ||
| 947 | if (start + length > slot->position + LENGTH (slot)) | ||
| 948 | error ("Interval would overlap"); | ||
| 949 | |||
| 950 | if (start == slot->position && length == LENGTH (slot)) | ||
| 951 | return slot; | ||
| 952 | |||
| 953 | if (slot->position == start) | ||
| 954 | { | ||
| 955 | /* New right node. */ | ||
| 956 | split_interval_right (slot, length + 1); | ||
| 957 | return slot; | ||
| 958 | } | ||
| 959 | |||
| 960 | if (slot->position + LENGTH (slot) == start + length) | ||
| 961 | { | ||
| 962 | /* New left node. */ | ||
| 963 | split_interval_left (slot, LENGTH (slot) - length + 1); | ||
| 964 | return slot; | ||
| 965 | } | ||
| 966 | |||
| 967 | /* Convert interval SLOT into three intervals. */ | ||
| 968 | split_interval_left (slot, start - slot->position + 1); | ||
| 969 | split_interval_right (slot, length + 1); | ||
| 970 | return slot; | ||
| 971 | } | ||
| 972 | |||
| 973 | void | ||
| 974 | map_intervals (source, destination, position) | ||
| 975 | INTERVAL source, destination; | ||
| 976 | int position; | ||
| 977 | { | ||
| 978 | register INTERVAL i, t; | ||
| 979 | |||
| 980 | if (NULL_INTERVAL_P (source)) | ||
| 981 | return; | ||
| 982 | i = find_interval (destination, position); | ||
| 983 | if (NULL_INTERVAL_P (i)) | ||
| 984 | return; | ||
| 985 | |||
| 986 | t = find_interval (source, 1); | ||
| 987 | while (! NULL_INTERVAL_P (t)) | ||
| 988 | { | ||
| 989 | i = make_new_interval (destination, position, LENGTH (t)); | ||
| 990 | position += LENGTH (t); | ||
| 991 | copy_properties (t, i); | ||
| 992 | t = next_interval (t); | ||
| 993 | } | ||
| 994 | } | ||
| 995 | |||
| 996 | /* Insert the intervals of NEW_TREE into BUFFER at POSITION. | ||
| 997 | |||
| 998 | This is used in insdel.c when inserting Lisp_Strings into | ||
| 999 | the buffer. The text corresponding to NEW_TREE is already in | ||
| 1000 | the buffer when this is called. The intervals of new tree are | ||
| 1001 | those belonging to the string being inserted; a copy is not made. | ||
| 1002 | |||
| 1003 | If the inserted text had no intervals associated, this function | ||
| 1004 | simply returns -- offset_intervals should handle placing the | ||
| 1005 | text in the correct interval, depending on the hungry bits. | ||
| 1006 | |||
| 1007 | If the inserted text had properties (intervals), then there are two | ||
| 1008 | cases -- either insertion happened in the middle of some interval, | ||
| 1009 | or between two intervals. | ||
| 1010 | |||
| 1011 | If the text goes into the middle of an interval, then new | ||
| 1012 | intervals are created in the middle with only the properties of | ||
| 1013 | the new text, *unless* the macro MERGE_INSERTIONS is true, in | ||
| 1014 | which case the new text has the union of its properties and those | ||
| 1015 | of the text into which it was inserted. | ||
| 1016 | |||
| 1017 | If the text goes between two intervals, then if neither interval | ||
| 1018 | had its appropriate hungry property set (front_hungry, rear_hungry), | ||
| 1019 | the new text has only its properties. If one of the hungry properties | ||
| 1020 | is set, then the new text "sticks" to that region and its properties | ||
| 1021 | depend on merging as above. If both the preceding and succeding | ||
| 1022 | intervals to the new text are "hungry", then the new text retains | ||
| 1023 | only its properties, as if neither hungry property were set. Perhaps | ||
| 1024 | we should consider merging all three sets of properties onto the new | ||
| 1025 | text... */ | ||
| 1026 | |||
| 1027 | void | ||
| 1028 | graft_intervals_into_buffer (new_tree, position, b) | ||
| 1029 | INTERVAL new_tree; | ||
| 1030 | int position; | ||
| 1031 | struct buffer *b; | ||
| 1032 | { | ||
| 1033 | register INTERVAL under, over, this; | ||
| 1034 | register INTERVAL tree = b->intervals; | ||
| 1035 | |||
| 1036 | /* If the new text has no properties, it becomes part of whatever | ||
| 1037 | interval it was inserted into. */ | ||
| 1038 | if (NULL_INTERVAL_P (new_tree)) | ||
| 1039 | return; | ||
| 1040 | |||
| 1041 | /* Paranoia -- the text has already been added, so this buffer | ||
| 1042 | should be of non-zero length. */ | ||
| 1043 | if (TOTAL_LENGTH (tree) == 0) | ||
| 1044 | abort (); | ||
| 1045 | |||
| 1046 | if (NULL_INTERVAL_P (tree)) | ||
| 1047 | { | ||
| 1048 | /* The inserted text constitutes the whole buffer, so | ||
| 1049 | simply copy over the interval structure. */ | ||
| 1050 | if (BUF_Z (b) == TOTAL_LENGTH (new_tree)) | ||
| 1051 | { | ||
| 1052 | b->intervals = reproduce_tree (new_tree, tree->parent); | ||
| 1053 | /* Explicitly free the old tree here. */ | ||
| 1054 | |||
| 1055 | return; | ||
| 1056 | } | ||
| 1057 | |||
| 1058 | /* Create an interval tree in which to place a copy | ||
| 1059 | of the intervals of the inserted string. */ | ||
| 1060 | { | ||
| 1061 | Lisp_Object buffer; | ||
| 1062 | XSET (buffer, Lisp_Buffer, b); | ||
| 1063 | create_root_interval (buffer); | ||
| 1064 | } | ||
| 1065 | } | ||
| 1066 | else | ||
| 1067 | if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (new_tree)) | ||
| 1068 | |||
| 1069 | /* If the buffer contains only the new string, but | ||
| 1070 | there was already some interval tree there, then it may be | ||
| 1071 | some zero length intervals. Eventually, do something clever | ||
| 1072 | about inserting properly. For now, just waste the old intervals. */ | ||
| 1073 | { | ||
| 1074 | b->intervals = reproduce_tree (new_tree, tree->parent); | ||
| 1075 | /* Explicitly free the old tree here. */ | ||
| 1076 | |||
| 1077 | return; | ||
| 1078 | } | ||
| 1079 | |||
| 1080 | this = under = find_interval (tree, position); | ||
| 1081 | if (NULL_INTERVAL_P (under)) /* Paranoia */ | ||
| 1082 | abort (); | ||
| 1083 | over = find_interval (new_tree, 1); | ||
| 1084 | |||
| 1085 | /* Insertion between intervals */ | ||
| 1086 | if (position == under->position) | ||
| 1087 | { | ||
| 1088 | /* First interval -- none precede it. */ | ||
| 1089 | if (position == 1) | ||
| 1090 | { | ||
| 1091 | if (! under->front_hungry) | ||
| 1092 | /* The inserted string keeps its own properties. */ | ||
| 1093 | while (! NULL_INTERVAL_P (over)) | ||
| 1094 | { | ||
| 1095 | position = LENGTH (over) + 1; | ||
| 1096 | this = split_interval_left (this, position); | ||
| 1097 | copy_properties (over, this); | ||
| 1098 | over = next_interval (over); | ||
| 1099 | } | ||
| 1100 | else | ||
| 1101 | /* This string sticks to under */ | ||
| 1102 | while (! NULL_INTERVAL_P (over)) | ||
| 1103 | { | ||
| 1104 | position = LENGTH (over) + 1; | ||
| 1105 | this = split_interval_left (this, position); | ||
| 1106 | copy_properties (under, this); | ||
| 1107 | if (MERGE_INSERTIONS (under)) | ||
| 1108 | merge_properties (over, this); | ||
| 1109 | over = next_interval (over); | ||
| 1110 | } | ||
| 1111 | } | ||
| 1112 | else | ||
| 1113 | { | ||
| 1114 | INTERVAL prev = previous_interval (under); | ||
| 1115 | if (NULL_INTERVAL_P (prev)) | ||
| 1116 | abort (); | ||
| 1117 | |||
| 1118 | if (prev->rear_hungry) | ||
| 1119 | { | ||
| 1120 | if (under->front_hungry) | ||
| 1121 | /* The intervals go inbetween as the two hungry | ||
| 1122 | properties cancel each other. Should we change | ||
| 1123 | this policy? */ | ||
| 1124 | while (! NULL_INTERVAL_P (over)) | ||
| 1125 | { | ||
| 1126 | position = LENGTH (over) + 1; | ||
| 1127 | this = split_interval_left (this, position); | ||
| 1128 | copy_properties (over, this); | ||
| 1129 | over = next_interval (over); | ||
| 1130 | } | ||
| 1131 | else | ||
| 1132 | /* The intervals stick to prev */ | ||
| 1133 | while (! NULL_INTERVAL_P (over)) | ||
| 1134 | { | ||
| 1135 | position = LENGTH (over) + 1; | ||
| 1136 | this = split_interval_left (this, position); | ||
| 1137 | copy_properties (prev, this); | ||
| 1138 | if (MERGE_INSERTIONS (prev)) | ||
| 1139 | merge_properties (over, this); | ||
| 1140 | over = next_interval (over); | ||
| 1141 | } | ||
| 1142 | } | ||
| 1143 | else | ||
| 1144 | { | ||
| 1145 | if (under->front_hungry) | ||
| 1146 | /* The intervals stick to under */ | ||
| 1147 | while (! NULL_INTERVAL_P (over)) | ||
| 1148 | { | ||
| 1149 | position = LENGTH (over) + 1; | ||
| 1150 | this = split_interval_left (this, position); | ||
| 1151 | copy_properties (under, this); | ||
| 1152 | if (MERGE_INSERTIONS (under)) | ||
| 1153 | merge_properties (over, this); | ||
| 1154 | over = next_interval (over); | ||
| 1155 | } | ||
| 1156 | else | ||
| 1157 | /* The intervals go inbetween */ | ||
| 1158 | while (! NULL_INTERVAL_P (over)) | ||
| 1159 | { | ||
| 1160 | position = LENGTH (over) + 1; | ||
| 1161 | this = split_interval_left (this, position); | ||
| 1162 | copy_properties (over, this); | ||
| 1163 | over = next_interval (over); | ||
| 1164 | } | ||
| 1165 | } | ||
| 1166 | } | ||
| 1167 | |||
| 1168 | b->intervals = balance_intervals (b->intervals); | ||
| 1169 | return; | ||
| 1170 | } | ||
| 1171 | |||
| 1172 | /* Here for insertion in the middle of an interval. */ | ||
| 1173 | |||
| 1174 | if (TOTAL_LENGTH (new_tree) < LENGTH (this)) | ||
| 1175 | { | ||
| 1176 | INTERVAL end_unchanged | ||
| 1177 | = split_interval_right (this, TOTAL_LENGTH (new_tree) + 1); | ||
| 1178 | copy_properties (under, end_unchanged); | ||
| 1179 | } | ||
| 1180 | |||
| 1181 | position = position - tree->position + 1; | ||
| 1182 | while (! NULL_INTERVAL_P (over)) | ||
| 1183 | { | ||
| 1184 | this = split_interval_right (under, position); | ||
| 1185 | copy_properties (over, this); | ||
| 1186 | if (MERGE_INSERTIONS (under)) | ||
| 1187 | merge_properties (under, this); | ||
| 1188 | |||
| 1189 | position = LENGTH (over) + 1; | ||
| 1190 | over = next_interval (over); | ||
| 1191 | } | ||
| 1192 | |||
| 1193 | b->intervals = balance_intervals (b->intervals); | ||
| 1194 | return; | ||
| 1195 | } | ||
| 1196 | |||
| 1197 | /* Intervals can have properties which are hooks to call. Look for | ||
| 1198 | the property HOOK on interval I, and if found, call its value as | ||
| 1199 | a function.*/ | ||
| 1200 | |||
| 1201 | void | ||
| 1202 | run_hooks (i, hook) | ||
| 1203 | INTERVAL i; | ||
| 1204 | Lisp_Object hook; | ||
| 1205 | { | ||
| 1206 | register Lisp_Object tail = i->plist; | ||
| 1207 | register Lisp_Object sym, val; | ||
| 1208 | |||
| 1209 | while (! NILP (tail)) | ||
| 1210 | { | ||
| 1211 | sym = Fcar (tail); | ||
| 1212 | if (EQ (sym, hook)) | ||
| 1213 | { | ||
| 1214 | Lisp_Object begin, end; | ||
| 1215 | XFASTINT (begin) = i->position; | ||
| 1216 | XFASTINT (end) = i->position + LENGTH (i) - 1; | ||
| 1217 | val = Fcar (Fcdr (tail)); | ||
| 1218 | call2 (val, begin, end); | ||
| 1219 | return; | ||
| 1220 | } | ||
| 1221 | |||
| 1222 | tail = Fcdr (Fcdr (tail)); | ||
| 1223 | } | ||
| 1224 | } | ||
| 1225 | |||
| 1226 | /* Set point in BUFFER to POSITION. If the target position is in | ||
| 1227 | an invisible interval which is not displayed with a special glyph, | ||
| 1228 | skip intervals until we find one. Point may be at the first | ||
| 1229 | position of an invisible interval, if it is displayed with a | ||
| 1230 | special glyph. | ||
| 1231 | |||
| 1232 | This is the only place `PT' is an lvalue in all of emacs. */ | ||
| 1233 | |||
| 1234 | void | ||
| 1235 | set_point (position, buffer) | ||
| 1236 | register int position; | ||
| 1237 | register struct buffer *buffer; | ||
| 1238 | { | ||
| 1239 | register INTERVAL to, from, target; | ||
| 1240 | register int iposition = position; | ||
| 1241 | int buffer_point; | ||
| 1242 | register Lisp_Object obj; | ||
| 1243 | int backwards = (position < BUF_PT (buffer)) ? 1 : 0; | ||
| 1244 | |||
| 1245 | if (position == buffer->text.pt) | ||
| 1246 | return; | ||
| 1247 | |||
| 1248 | if (NULL_INTERVAL_P (buffer->intervals)) | ||
| 1249 | { | ||
| 1250 | buffer->text.pt = position; | ||
| 1251 | return; | ||
| 1252 | } | ||
| 1253 | |||
| 1254 | /* Perhaps we should just change `position' to the limit. */ | ||
| 1255 | if (position > BUF_Z (buffer) || position < BUF_BEG (buffer)) | ||
| 1256 | abort (); | ||
| 1257 | |||
| 1258 | /* Position Z is really one past the last char in the buffer. */ | ||
| 1259 | if (position == BUF_Z (buffer)) | ||
| 1260 | iposition = position - 1; | ||
| 1261 | |||
| 1262 | to = find_interval (buffer->intervals, iposition); | ||
| 1263 | buffer_point =(BUF_PT (buffer) == BUF_Z (buffer) | ||
| 1264 | ? BUF_Z (buffer) - 1 | ||
| 1265 | : BUF_PT (buffer)); | ||
| 1266 | from = find_interval (buffer->intervals, buffer_point); | ||
| 1267 | if (NULL_INTERVAL_P (to) || NULL_INTERVAL_P (from)) | ||
| 1268 | abort (); /* Paranoia */ | ||
| 1269 | |||
| 1270 | /* Moving within an interval */ | ||
| 1271 | if (to == from && INTERVAL_VISIBLE_P (to)) | ||
| 1272 | { | ||
| 1273 | buffer->text.pt = position; | ||
| 1274 | return; | ||
| 1275 | } | ||
| 1276 | |||
| 1277 | /* Here for the case of moving into another interval. */ | ||
| 1278 | |||
| 1279 | target = to; | ||
| 1280 | while (! INTERVAL_VISIBLE_P (to) && ! DISPLAY_INVISIBLE_GLYPH (to) | ||
| 1281 | && ! NULL_INTERVAL_P (to)) | ||
| 1282 | to = (backwards ? previous_interval (to) : next_interval (to)); | ||
| 1283 | if (NULL_INTERVAL_P (to)) | ||
| 1284 | return; | ||
| 1285 | |||
| 1286 | /* Here we know we are actually moving to another interval. */ | ||
| 1287 | if (INTERVAL_VISIBLE_P (to)) | ||
| 1288 | { | ||
| 1289 | /* If we skipped some intervals, go to the closest point | ||
| 1290 | in the interval we've stopped at. */ | ||
| 1291 | if (to != target) | ||
| 1292 | buffer->text.pt = (backwards | ||
| 1293 | ? to->position + LENGTH (to) - 1 | ||
| 1294 | : to->position); | ||
| 1295 | else | ||
| 1296 | buffer->text.pt = position; | ||
| 1297 | } | ||
| 1298 | else | ||
| 1299 | buffer->text.pt = to->position; | ||
| 1300 | |||
| 1301 | /* We should run point-left and point-entered hooks here, iff the | ||
| 1302 | two intervals are not equivalent. */ | ||
| 1303 | } | ||
| 1304 | |||
| 1305 | /* Check for read-only intervals. Call the modification hooks if any. | ||
| 1306 | Check for the range START up to (but not including) TO. | ||
| 1307 | |||
| 1308 | First all intervals of the region are checked that they are | ||
| 1309 | modifiable, then all the modification hooks are called in | ||
| 1310 | lexicographic order. */ | ||
| 1311 | |||
| 1312 | void | ||
| 1313 | verify_interval_modification (buf, start, end) | ||
| 1314 | struct buffer *buf; | ||
| 1315 | int start, end; | ||
| 1316 | { | ||
| 1317 | register INTERVAL intervals = buf->intervals; | ||
| 1318 | register INTERVAL i; | ||
| 1319 | register Lisp_Object hooks = Qnil; | ||
| 1320 | |||
| 1321 | if (NULL_INTERVAL_P (intervals)) | ||
| 1322 | return; | ||
| 1323 | |||
| 1324 | if (start > end) | ||
| 1325 | { | ||
| 1326 | int temp = start; | ||
| 1327 | start = end; | ||
| 1328 | end = temp; | ||
| 1329 | } | ||
| 1330 | |||
| 1331 | if (start == BUF_Z (buf)) | ||
| 1332 | { | ||
| 1333 | if (BUF_Z (buf) == 1) | ||
| 1334 | abort (); | ||
| 1335 | |||
| 1336 | i = find_interval (intervals, start - 1); | ||
| 1337 | if (! END_HUNGRY_P (i)) | ||
| 1338 | return; | ||
| 1339 | } | ||
| 1340 | else | ||
| 1341 | i = find_interval (intervals, start); | ||
| 1342 | |||
| 1343 | do | ||
| 1344 | { | ||
| 1345 | register Lisp_Object mod_hook; | ||
| 1346 | if (! INTERVAL_WRITABLE_P (i)) | ||
| 1347 | error ("Attempt to write in a protected interval"); | ||
| 1348 | mod_hook = Fget (Qmodification, i->plist); | ||
| 1349 | if (! EQ (mod_hook, Qnil)) | ||
| 1350 | hooks = Fcons (mod_hook, hooks); | ||
| 1351 | i = next_interval (i); | ||
| 1352 | } | ||
| 1353 | while (! NULL_INTERVAL_P (i) && i->position <= end); | ||
| 1354 | |||
| 1355 | hooks = Fnreverse (hooks); | ||
| 1356 | while (! EQ (hooks, Qnil)) | ||
| 1357 | call2 (Fcar (hooks), i->position, i->position + LENGTH (i) - 1); | ||
| 1358 | } | ||
| 1359 | |||
| 1360 | /* Balance an interval node if the amount of text in its left and right | ||
| 1361 | subtrees differs by more than the percentage specified by | ||
| 1362 | `interval-balance-threshold'. */ | ||
| 1363 | |||
| 1364 | static INTERVAL | ||
| 1365 | balance_an_interval (i) | ||
| 1366 | INTERVAL i; | ||
| 1367 | { | ||
| 1368 | register int total_children_size = (LEFT_TOTAL_LENGTH (i) | ||
| 1369 | + RIGHT_TOTAL_LENGTH (i)); | ||
| 1370 | register int threshold = (XFASTINT (interval_balance_threshold) | ||
| 1371 | * (total_children_size / 100)); | ||
| 1372 | |||
| 1373 | if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i) | ||
| 1374 | && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold) | ||
| 1375 | return rotate_right (i); | ||
| 1376 | |||
| 1377 | if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i) | ||
| 1378 | && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold) | ||
| 1379 | return rotate_right (i); | ||
| 1380 | |||
| 1381 | #if 0 | ||
| 1382 | if (LEFT_TOTAL_LENGTH (i) > | ||
| 1383 | (RIGHT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold))) | ||
| 1384 | return rotate_right (i); | ||
| 1385 | |||
| 1386 | if (RIGHT_TOTAL_LENGTH (i) > | ||
| 1387 | (LEFT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold))) | ||
| 1388 | return rotate_left (i); | ||
| 1389 | #endif | ||
| 1390 | |||
| 1391 | return i; | ||
| 1392 | } | ||
| 1393 | |||
| 1394 | /* Balance the interval tree TREE. Balancing is by weight | ||
| 1395 | (the amount of text). */ | ||
| 1396 | |||
| 1397 | INTERVAL | ||
| 1398 | balance_intervals (tree) | ||
| 1399 | register INTERVAL tree; | ||
| 1400 | { | ||
| 1401 | register INTERVAL new_tree; | ||
| 1402 | |||
| 1403 | if (NULL_INTERVAL_P (tree)) | ||
| 1404 | return NULL_INTERVAL; | ||
| 1405 | |||
| 1406 | new_tree = tree; | ||
| 1407 | do | ||
| 1408 | { | ||
| 1409 | tree = new_tree; | ||
| 1410 | new_tree = balance_an_interval (new_tree); | ||
| 1411 | } | ||
| 1412 | while (new_tree != tree); | ||
| 1413 | |||
| 1414 | return new_tree; | ||
| 1415 | } | ||
| 1416 | |||
| 1417 | /* Produce an interval tree reflecting the interval structure in | ||
| 1418 | TREE from START to START + LENGTH. */ | ||
| 1419 | |||
| 1420 | static INTERVAL | ||
| 1421 | copy_intervals (tree, start, length) | ||
| 1422 | INTERVAL tree; | ||
| 1423 | int start, length; | ||
| 1424 | { | ||
| 1425 | register INTERVAL i, new, t; | ||
| 1426 | register int got; | ||
| 1427 | |||
| 1428 | if (NULL_INTERVAL_P (tree) || length <= 0) | ||
| 1429 | return NULL_INTERVAL; | ||
| 1430 | |||
| 1431 | i = find_interval (tree, start); | ||
| 1432 | if (NULL_INTERVAL_P (i) || LENGTH (i) == 0) | ||
| 1433 | abort (); | ||
| 1434 | |||
| 1435 | /* If there is only one interval and it's the default, return nil. */ | ||
| 1436 | if ((start - i->position + 1 + length) < LENGTH (i) | ||
| 1437 | && DEFAULT_INTERVAL_P (i)) | ||
| 1438 | return NULL_INTERVAL; | ||
| 1439 | |||
| 1440 | new = make_interval (); | ||
| 1441 | new->position = 1; | ||
| 1442 | got = (LENGTH (i) - (start - i->position)); | ||
| 1443 | new->total_length = got; | ||
| 1444 | copy_properties (i, new); | ||
| 1445 | |||
| 1446 | t = new; | ||
| 1447 | while (got < length) | ||
| 1448 | { | ||
| 1449 | i = next_interval (i); | ||
| 1450 | t->right = make_interval (); | ||
| 1451 | t->right->parent = t; | ||
| 1452 | t->right->position = t->position + got - 1; | ||
| 1453 | |||
| 1454 | t = t->right; | ||
| 1455 | t->total_length = length - got; | ||
| 1456 | copy_properties (i, t); | ||
| 1457 | got += LENGTH (i); | ||
| 1458 | } | ||
| 1459 | |||
| 1460 | if (got > length) | ||
| 1461 | t->total_length -= (got - length); | ||
| 1462 | |||
| 1463 | return balance_intervals (new); | ||
| 1464 | } | ||
| 1465 | |||
| 1466 | /* Give buffer SINK the properties of buffer SOURCE from POSITION | ||
| 1467 | to END. The properties are attached to SINK starting at position AT. | ||
| 1468 | |||
| 1469 | No range checking is done. */ | ||
| 1470 | |||
| 1471 | void | ||
| 1472 | insert_interval_copy (source, position, end, sink, at) | ||
| 1473 | struct buffer *source, *sink; | ||
| 1474 | register int position, end, at; | ||
| 1475 | { | ||
| 1476 | INTERVAL interval_copy = copy_intervals (source->intervals, | ||
| 1477 | position, end - position); | ||
| 1478 | graft_intervals_into_buffer (interval_copy, at, sink); | ||
| 1479 | } | ||
| 1480 | |||
| 1481 | /* Give STRING the properties of BUFFER from POSITION to LENGTH. */ | ||
| 1482 | |||
| 1483 | void | ||
| 1484 | copy_intervals_to_string (string, buffer, position, length) | ||
| 1485 | Lisp_Object string, buffer; | ||
| 1486 | int position, length; | ||
| 1487 | { | ||
| 1488 | INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals, | ||
| 1489 | position, length); | ||
| 1490 | if (NULL_INTERVAL_P (interval_copy)) | ||
| 1491 | return; | ||
| 1492 | |||
| 1493 | interval_copy->parent = (INTERVAL) string; | ||
| 1494 | XSTRING (string)->intervals = interval_copy; | ||
| 1495 | } | ||
| 1496 | |||
| 1497 | INTERVAL | ||
| 1498 | make_string_interval (string, start, length) | ||
| 1499 | struct Lisp_String *string; | ||
| 1500 | int start, length; | ||
| 1501 | { | ||
| 1502 | if (start < 1 || start > string->size) | ||
| 1503 | error ("Interval index out of range"); | ||
| 1504 | if (length < 1 || length > string->size - start + 1) | ||
| 1505 | error ("Interval won't fit"); | ||
| 1506 | |||
| 1507 | if (length == 0) | ||
| 1508 | return NULL_INTERVAL; | ||
| 1509 | |||
| 1510 | return make_new_interval (string->intervals, start, length); | ||
| 1511 | } | ||
| 1512 | |||
| 1513 | /* Create an interval of length LENGTH in buffer BUF at position START. */ | ||
| 1514 | |||
| 1515 | INTERVAL | ||
| 1516 | make_buffer_interval (buf, start, length) | ||
| 1517 | struct buffer *buf; | ||
| 1518 | int start, length; | ||
| 1519 | { | ||
| 1520 | if (start < BUF_BEG (buf) || start > BUF_Z (buf)) | ||
| 1521 | error ("Interval index out of range"); | ||
| 1522 | if (length < 1 || length > BUF_Z (buf) - start) | ||
| 1523 | error ("Interval won't fit"); | ||
| 1524 | |||
| 1525 | if (length == 0) | ||
| 1526 | return NULL_INTERVAL; | ||
| 1527 | |||
| 1528 | return make_new_interval (buf->intervals, start, length); | ||
| 1529 | } | ||