diff options
| author | Roland McGrath | 1995-05-17 20:54:49 +0000 |
|---|---|---|
| committer | Roland McGrath | 1995-05-17 20:54:49 +0000 |
| commit | 2860be63dda486c907ca8f2935309f4a8ce8fa31 (patch) | |
| tree | cebae5e13344baecbd345c272e8984cfbcb0d1e3 /src | |
| parent | 078c09a28dd5f5e7026f8dfb7804b77be25e51ff (diff) | |
| download | emacs-2860be63dda486c907ca8f2935309f4a8ce8fa31.tar.gz emacs-2860be63dda486c907ca8f2935309f4a8ce8fa31.zip | |
Updated from ../gpl2lgpl.sed /home/gd/gnu/lib/regex.c
Diffstat (limited to 'src')
| -rw-r--r-- | src/regex.c | 5392 |
1 files changed, 1 insertions, 5391 deletions
diff --git a/src/regex.c b/src/regex.c index a3f601bcae5..5d11a635514 100644 --- a/src/regex.c +++ b/src/regex.c | |||
| @@ -3,5395 +3,5 @@ | |||
| 3 | (Implements POSIX draft P10003.2/D11.2, except for | 3 | (Implements POSIX draft P10003.2/D11.2, except for |
| 4 | internationalization features.) | 4 | internationalization features.) |
| 5 | 5 | ||
| 6 | Copyright (C) 1993, 1994 Free Software Foundation, Inc. | 6 | Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. |
| 7 | 7 | ||
| 8 | This program is free software; you can redistribute it and/or modify | ||
| 9 | it under the terms of the GNU General Public License as published by | ||
| 10 | the Free Software Foundation; either version 2, or (at your option) | ||
| 11 | any later version. | ||
| 12 | |||
| 13 | This program is distributed in the hope that it will be useful, | ||
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 16 | GNU General Public License for more details. | ||
| 17 | |||
| 18 | You should have received a copy of the GNU General Public License | ||
| 19 | along with this program; if not, write to the Free Software | ||
| 20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | ||
| 21 | |||
| 22 | /* AIX requires this to be the first thing in the file. */ | ||
| 23 | #if defined (_AIX) && !defined (REGEX_MALLOC) | ||
| 24 | #pragma alloca | ||
| 25 | #endif | ||
| 26 | |||
| 27 | #define _GNU_SOURCE | ||
| 28 | |||
| 29 | #ifdef HAVE_CONFIG_H | ||
| 30 | #include <config.h> | ||
| 31 | #endif | ||
| 32 | |||
| 33 | /* We need this for `regex.h', and perhaps for the Emacs include files. */ | ||
| 34 | #include <sys/types.h> | ||
| 35 | |||
| 36 | /* This is for other GNU distributions with internationalized messages. | ||
| 37 | The GNU C Library itself does not yet support such messages. */ | ||
| 38 | #if HAVE_LIBINTL_H | ||
| 39 | # include <libintl.h> | ||
| 40 | #else | ||
| 41 | # define gettext(msgid) (msgid) | ||
| 42 | #endif | ||
| 43 | |||
| 44 | /* The `emacs' switch turns on certain matching commands | ||
| 45 | that make sense only in Emacs. */ | ||
| 46 | #ifdef emacs | ||
| 47 | |||
| 48 | #include "lisp.h" | ||
| 49 | #include "buffer.h" | ||
| 50 | #include "syntax.h" | ||
| 51 | |||
| 52 | #else /* not emacs */ | ||
| 53 | |||
| 54 | /* If we are not linking with Emacs proper, | ||
| 55 | we can't use the relocating allocator | ||
| 56 | even if config.h says that we can. */ | ||
| 57 | #undef REL_ALLOC | ||
| 58 | |||
| 59 | #ifdef STDC_HEADERS | ||
| 60 | #include <stdlib.h> | ||
| 61 | #else | ||
| 62 | char *malloc (); | ||
| 63 | char *realloc (); | ||
| 64 | #endif | ||
| 65 | |||
| 66 | /* We used to test for `BSTRING' here, but only GCC and Emacs define | ||
| 67 | `BSTRING', as far as I know, and neither of them use this code. */ | ||
| 68 | #ifndef INHIBIT_STRING_HEADER | ||
| 69 | #if HAVE_STRING_H || STDC_HEADERS | ||
| 70 | #include <string.h> | ||
| 71 | #ifndef bcmp | ||
| 72 | #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) | ||
| 73 | #endif | ||
| 74 | #ifndef bcopy | ||
| 75 | #define bcopy(s, d, n) memcpy ((d), (s), (n)) | ||
| 76 | #endif | ||
| 77 | #ifndef bzero | ||
| 78 | #define bzero(s, n) memset ((s), 0, (n)) | ||
| 79 | #endif | ||
| 80 | #else | ||
| 81 | #include <strings.h> | ||
| 82 | #endif | ||
| 83 | #endif | ||
| 84 | |||
| 85 | /* Define the syntax stuff for \<, \>, etc. */ | ||
| 86 | |||
| 87 | /* This must be nonzero for the wordchar and notwordchar pattern | ||
| 88 | commands in re_match_2. */ | ||
| 89 | #ifndef Sword | ||
| 90 | #define Sword 1 | ||
| 91 | #endif | ||
| 92 | |||
| 93 | #ifdef SWITCH_ENUM_BUG | ||
| 94 | #define SWITCH_ENUM_CAST(x) ((int)(x)) | ||
| 95 | #else | ||
| 96 | #define SWITCH_ENUM_CAST(x) (x) | ||
| 97 | #endif | ||
| 98 | |||
| 99 | #ifdef SYNTAX_TABLE | ||
| 100 | |||
| 101 | extern char *re_syntax_table; | ||
| 102 | |||
| 103 | #else /* not SYNTAX_TABLE */ | ||
| 104 | |||
| 105 | /* How many characters in the character set. */ | ||
| 106 | #define CHAR_SET_SIZE 256 | ||
| 107 | |||
| 108 | static char re_syntax_table[CHAR_SET_SIZE]; | ||
| 109 | |||
| 110 | static void | ||
| 111 | init_syntax_once () | ||
| 112 | { | ||
| 113 | register int c; | ||
| 114 | static int done = 0; | ||
| 115 | |||
| 116 | if (done) | ||
| 117 | return; | ||
| 118 | |||
| 119 | bzero (re_syntax_table, sizeof re_syntax_table); | ||
| 120 | |||
| 121 | for (c = 'a'; c <= 'z'; c++) | ||
| 122 | re_syntax_table[c] = Sword; | ||
| 123 | |||
| 124 | for (c = 'A'; c <= 'Z'; c++) | ||
| 125 | re_syntax_table[c] = Sword; | ||
| 126 | |||
| 127 | for (c = '0'; c <= '9'; c++) | ||
| 128 | re_syntax_table[c] = Sword; | ||
| 129 | |||
| 130 | re_syntax_table['_'] = Sword; | ||
| 131 | |||
| 132 | done = 1; | ||
| 133 | } | ||
| 134 | |||
| 135 | #endif /* not SYNTAX_TABLE */ | ||
| 136 | |||
| 137 | #define SYNTAX(c) re_syntax_table[c] | ||
| 138 | |||
| 139 | #endif /* not emacs */ | ||
| 140 | |||
| 141 | /* Get the interface, including the syntax bits. */ | ||
| 142 | #include "regex.h" | ||
| 143 | |||
| 144 | /* isalpha etc. are used for the character classes. */ | ||
| 145 | #include <ctype.h> | ||
| 146 | |||
| 147 | /* Jim Meyering writes: | ||
| 148 | |||
| 149 | "... Some ctype macros are valid only for character codes that | ||
| 150 | isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | ||
| 151 | using /bin/cc or gcc but without giving an ansi option). So, all | ||
| 152 | ctype uses should be through macros like ISPRINT... If | ||
| 153 | STDC_HEADERS is defined, then autoconf has verified that the ctype | ||
| 154 | macros don't need to be guarded with references to isascii. ... | ||
| 155 | Defining isascii to 1 should let any compiler worth its salt | ||
| 156 | eliminate the && through constant folding." */ | ||
| 157 | |||
| 158 | #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) | ||
| 159 | #define ISASCII(c) 1 | ||
| 160 | #else | ||
| 161 | #define ISASCII(c) isascii(c) | ||
| 162 | #endif | ||
| 163 | |||
| 164 | #ifdef isblank | ||
| 165 | #define ISBLANK(c) (ISASCII (c) && isblank (c)) | ||
| 166 | #else | ||
| 167 | #define ISBLANK(c) ((c) == ' ' || (c) == '\t') | ||
| 168 | #endif | ||
| 169 | #ifdef isgraph | ||
| 170 | #define ISGRAPH(c) (ISASCII (c) && isgraph (c)) | ||
| 171 | #else | ||
| 172 | #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) | ||
| 173 | #endif | ||
| 174 | |||
| 175 | #define ISPRINT(c) (ISASCII (c) && isprint (c)) | ||
| 176 | #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) | ||
| 177 | #define ISALNUM(c) (ISASCII (c) && isalnum (c)) | ||
| 178 | #define ISALPHA(c) (ISASCII (c) && isalpha (c)) | ||
| 179 | #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) | ||
| 180 | #define ISLOWER(c) (ISASCII (c) && islower (c)) | ||
| 181 | #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) | ||
| 182 | #define ISSPACE(c) (ISASCII (c) && isspace (c)) | ||
| 183 | #define ISUPPER(c) (ISASCII (c) && isupper (c)) | ||
| 184 | #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) | ||
| 185 | |||
| 186 | #ifndef NULL | ||
| 187 | #define NULL 0 | ||
| 188 | #endif | ||
| 189 | |||
| 190 | /* We remove any previous definition of `SIGN_EXTEND_CHAR', | ||
| 191 | since ours (we hope) works properly with all combinations of | ||
| 192 | machines, compilers, `char' and `unsigned char' argument types. | ||
| 193 | (Per Bothner suggested the basic approach.) */ | ||
| 194 | #undef SIGN_EXTEND_CHAR | ||
| 195 | #if __STDC__ | ||
| 196 | #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | ||
| 197 | #else /* not __STDC__ */ | ||
| 198 | /* As in Harbison and Steele. */ | ||
| 199 | #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) | ||
| 200 | #endif | ||
| 201 | |||
| 202 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | ||
| 203 | use `alloca' instead of `malloc'. This is because using malloc in | ||
| 204 | re_search* or re_match* could cause memory leaks when C-g is used in | ||
| 205 | Emacs; also, malloc is slower and causes storage fragmentation. On | ||
| 206 | the other hand, malloc is more portable, and easier to debug. | ||
| 207 | |||
| 208 | Because we sometimes use alloca, some routines have to be macros, | ||
| 209 | not functions -- `alloca'-allocated space disappears at the end of the | ||
| 210 | function it is called in. */ | ||
| 211 | |||
| 212 | #ifdef REGEX_MALLOC | ||
| 213 | |||
| 214 | #define REGEX_ALLOCATE malloc | ||
| 215 | #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) | ||
| 216 | #define REGEX_FREE free | ||
| 217 | |||
| 218 | #else /* not REGEX_MALLOC */ | ||
| 219 | |||
| 220 | /* Emacs already defines alloca, sometimes. */ | ||
| 221 | #ifndef alloca | ||
| 222 | |||
| 223 | /* Make alloca work the best possible way. */ | ||
| 224 | #ifdef __GNUC__ | ||
| 225 | #define alloca __builtin_alloca | ||
| 226 | #else /* not __GNUC__ */ | ||
| 227 | #if HAVE_ALLOCA_H | ||
| 228 | #include <alloca.h> | ||
| 229 | #else /* not __GNUC__ or HAVE_ALLOCA_H */ | ||
| 230 | #ifndef _AIX /* Already did AIX, up at the top. */ | ||
| 231 | char *alloca (); | ||
| 232 | #endif /* not _AIX */ | ||
| 233 | #endif /* not HAVE_ALLOCA_H */ | ||
| 234 | #endif /* not __GNUC__ */ | ||
| 235 | |||
| 236 | #endif /* not alloca */ | ||
| 237 | |||
| 238 | #define REGEX_ALLOCATE alloca | ||
| 239 | |||
| 240 | /* Assumes a `char *destination' variable. */ | ||
| 241 | #define REGEX_REALLOCATE(source, osize, nsize) \ | ||
| 242 | (destination = (char *) alloca (nsize), \ | ||
| 243 | bcopy (source, destination, osize), \ | ||
| 244 | destination) | ||
| 245 | |||
| 246 | /* No need to do anything to free, after alloca. */ | ||
| 247 | #define REGEX_FREE(arg) (0) | ||
| 248 | |||
| 249 | #endif /* not REGEX_MALLOC */ | ||
| 250 | |||
| 251 | /* Define how to allocate the failure stack. */ | ||
| 252 | |||
| 253 | #ifdef REL_ALLOC | ||
| 254 | #define REGEX_ALLOCATE_STACK(size) \ | ||
| 255 | r_alloc (&failure_stack_ptr, (size)) | ||
| 256 | #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | ||
| 257 | r_re_alloc (&failure_stack_ptr, (nsize)) | ||
| 258 | #define REGEX_FREE_STACK(ptr) \ | ||
| 259 | r_alloc_free (&failure_stack_ptr) | ||
| 260 | |||
| 261 | #else /* not REL_ALLOC */ | ||
| 262 | |||
| 263 | #ifdef REGEX_MALLOC | ||
| 264 | |||
| 265 | #define REGEX_ALLOCATE_STACK malloc | ||
| 266 | #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) | ||
| 267 | #define REGEX_FREE_STACK free | ||
| 268 | |||
| 269 | #else /* not REGEX_MALLOC */ | ||
| 270 | |||
| 271 | #define REGEX_ALLOCATE_STACK alloca | ||
| 272 | |||
| 273 | #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | ||
| 274 | REGEX_REALLOCATE (source, osize, nsize) | ||
| 275 | /* No need to explicitly free anything. */ | ||
| 276 | #define REGEX_FREE_STACK(arg) | ||
| 277 | |||
| 278 | #endif /* not REGEX_MALLOC */ | ||
| 279 | #endif /* not REL_ALLOC */ | ||
| 280 | |||
| 281 | |||
| 282 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside | ||
| 283 | `string1' or just past its end. This works if PTR is NULL, which is | ||
| 284 | a good thing. */ | ||
| 285 | #define FIRST_STRING_P(ptr) \ | ||
| 286 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | ||
| 287 | |||
| 288 | /* (Re)Allocate N items of type T using malloc, or fail. */ | ||
| 289 | #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) | ||
| 290 | #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | ||
| 291 | #define RETALLOC_IF(addr, n, t) \ | ||
| 292 | if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) | ||
| 293 | #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) | ||
| 294 | |||
| 295 | #define BYTEWIDTH 8 /* In bits. */ | ||
| 296 | |||
| 297 | #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) | ||
| 298 | |||
| 299 | #undef MAX | ||
| 300 | #undef MIN | ||
| 301 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) | ||
| 302 | #define MIN(a, b) ((a) < (b) ? (a) : (b)) | ||
| 303 | |||
| 304 | typedef char boolean; | ||
| 305 | #define false 0 | ||
| 306 | #define true 1 | ||
| 307 | |||
| 308 | static int re_match_2_internal (); | ||
| 309 | |||
| 310 | /* These are the command codes that appear in compiled regular | ||
| 311 | expressions. Some opcodes are followed by argument bytes. A | ||
| 312 | command code can specify any interpretation whatsoever for its | ||
| 313 | arguments. Zero bytes may appear in the compiled regular expression. */ | ||
| 314 | |||
| 315 | typedef enum | ||
| 316 | { | ||
| 317 | no_op = 0, | ||
| 318 | |||
| 319 | /* Succeed right away--no more backtracking. */ | ||
| 320 | succeed, | ||
| 321 | |||
| 322 | /* Followed by one byte giving n, then by n literal bytes. */ | ||
| 323 | exactn, | ||
| 324 | |||
| 325 | /* Matches any (more or less) character. */ | ||
| 326 | anychar, | ||
| 327 | |||
| 328 | /* Matches any one char belonging to specified set. First | ||
| 329 | following byte is number of bitmap bytes. Then come bytes | ||
| 330 | for a bitmap saying which chars are in. Bits in each byte | ||
| 331 | are ordered low-bit-first. A character is in the set if its | ||
| 332 | bit is 1. A character too large to have a bit in the map is | ||
| 333 | automatically not in the set. */ | ||
| 334 | charset, | ||
| 335 | |||
| 336 | /* Same parameters as charset, but match any character that is | ||
| 337 | not one of those specified. */ | ||
| 338 | charset_not, | ||
| 339 | |||
| 340 | /* Start remembering the text that is matched, for storing in a | ||
| 341 | register. Followed by one byte with the register number, in | ||
| 342 | the range 0 to one less than the pattern buffer's re_nsub | ||
| 343 | field. Then followed by one byte with the number of groups | ||
| 344 | inner to this one. (This last has to be part of the | ||
| 345 | start_memory only because we need it in the on_failure_jump | ||
| 346 | of re_match_2.) */ | ||
| 347 | start_memory, | ||
| 348 | |||
| 349 | /* Stop remembering the text that is matched and store it in a | ||
| 350 | memory register. Followed by one byte with the register | ||
| 351 | number, in the range 0 to one less than `re_nsub' in the | ||
| 352 | pattern buffer, and one byte with the number of inner groups, | ||
| 353 | just like `start_memory'. (We need the number of inner | ||
| 354 | groups here because we don't have any easy way of finding the | ||
| 355 | corresponding start_memory when we're at a stop_memory.) */ | ||
| 356 | stop_memory, | ||
| 357 | |||
| 358 | /* Match a duplicate of something remembered. Followed by one | ||
| 359 | byte containing the register number. */ | ||
| 360 | duplicate, | ||
| 361 | |||
| 362 | /* Fail unless at beginning of line. */ | ||
| 363 | begline, | ||
| 364 | |||
| 365 | /* Fail unless at end of line. */ | ||
| 366 | endline, | ||
| 367 | |||
| 368 | /* Succeeds if at beginning of buffer (if emacs) or at beginning | ||
| 369 | of string to be matched (if not). */ | ||
| 370 | begbuf, | ||
| 371 | |||
| 372 | /* Analogously, for end of buffer/string. */ | ||
| 373 | endbuf, | ||
| 374 | |||
| 375 | /* Followed by two byte relative address to which to jump. */ | ||
| 376 | jump, | ||
| 377 | |||
| 378 | /* Same as jump, but marks the end of an alternative. */ | ||
| 379 | jump_past_alt, | ||
| 380 | |||
| 381 | /* Followed by two-byte relative address of place to resume at | ||
| 382 | in case of failure. */ | ||
| 383 | on_failure_jump, | ||
| 384 | |||
| 385 | /* Like on_failure_jump, but pushes a placeholder instead of the | ||
| 386 | current string position when executed. */ | ||
| 387 | on_failure_keep_string_jump, | ||
| 388 | |||
| 389 | /* Throw away latest failure point and then jump to following | ||
| 390 | two-byte relative address. */ | ||
| 391 | pop_failure_jump, | ||
| 392 | |||
| 393 | /* Change to pop_failure_jump if know won't have to backtrack to | ||
| 394 | match; otherwise change to jump. This is used to jump | ||
| 395 | back to the beginning of a repeat. If what follows this jump | ||
| 396 | clearly won't match what the repeat does, such that we can be | ||
| 397 | sure that there is no use backtracking out of repetitions | ||
| 398 | already matched, then we change it to a pop_failure_jump. | ||
| 399 | Followed by two-byte address. */ | ||
| 400 | maybe_pop_jump, | ||
| 401 | |||
| 402 | /* Jump to following two-byte address, and push a dummy failure | ||
| 403 | point. This failure point will be thrown away if an attempt | ||
| 404 | is made to use it for a failure. A `+' construct makes this | ||
| 405 | before the first repeat. Also used as an intermediary kind | ||
| 406 | of jump when compiling an alternative. */ | ||
| 407 | dummy_failure_jump, | ||
| 408 | |||
| 409 | /* Push a dummy failure point and continue. Used at the end of | ||
| 410 | alternatives. */ | ||
| 411 | push_dummy_failure, | ||
| 412 | |||
| 413 | /* Followed by two-byte relative address and two-byte number n. | ||
| 414 | After matching N times, jump to the address upon failure. */ | ||
| 415 | succeed_n, | ||
| 416 | |||
| 417 | /* Followed by two-byte relative address, and two-byte number n. | ||
| 418 | Jump to the address N times, then fail. */ | ||
| 419 | jump_n, | ||
| 420 | |||
| 421 | /* Set the following two-byte relative address to the | ||
| 422 | subsequent two-byte number. The address *includes* the two | ||
| 423 | bytes of number. */ | ||
| 424 | set_number_at, | ||
| 425 | |||
| 426 | wordchar, /* Matches any word-constituent character. */ | ||
| 427 | notwordchar, /* Matches any char that is not a word-constituent. */ | ||
| 428 | |||
| 429 | wordbeg, /* Succeeds if at word beginning. */ | ||
| 430 | wordend, /* Succeeds if at word end. */ | ||
| 431 | |||
| 432 | wordbound, /* Succeeds if at a word boundary. */ | ||
| 433 | notwordbound /* Succeeds if not at a word boundary. */ | ||
| 434 | |||
| 435 | #ifdef emacs | ||
| 436 | ,before_dot, /* Succeeds if before point. */ | ||
| 437 | at_dot, /* Succeeds if at point. */ | ||
| 438 | after_dot, /* Succeeds if after point. */ | ||
| 439 | |||
| 440 | /* Matches any character whose syntax is specified. Followed by | ||
| 441 | a byte which contains a syntax code, e.g., Sword. */ | ||
| 442 | syntaxspec, | ||
| 443 | |||
| 444 | /* Matches any character whose syntax is not that specified. */ | ||
| 445 | notsyntaxspec | ||
| 446 | #endif /* emacs */ | ||
| 447 | } re_opcode_t; | ||
| 448 | |||
| 449 | /* Common operations on the compiled pattern. */ | ||
| 450 | |||
| 451 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | ||
| 452 | |||
| 453 | #define STORE_NUMBER(destination, number) \ | ||
| 454 | do { \ | ||
| 455 | (destination)[0] = (number) & 0377; \ | ||
| 456 | (destination)[1] = (number) >> 8; \ | ||
| 457 | } while (0) | ||
| 458 | |||
| 459 | /* Same as STORE_NUMBER, except increment DESTINATION to | ||
| 460 | the byte after where the number is stored. Therefore, DESTINATION | ||
| 461 | must be an lvalue. */ | ||
| 462 | |||
| 463 | #define STORE_NUMBER_AND_INCR(destination, number) \ | ||
| 464 | do { \ | ||
| 465 | STORE_NUMBER (destination, number); \ | ||
| 466 | (destination) += 2; \ | ||
| 467 | } while (0) | ||
| 468 | |||
| 469 | /* Put into DESTINATION a number stored in two contiguous bytes starting | ||
| 470 | at SOURCE. */ | ||
| 471 | |||
| 472 | #define EXTRACT_NUMBER(destination, source) \ | ||
| 473 | do { \ | ||
| 474 | (destination) = *(source) & 0377; \ | ||
| 475 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ | ||
| 476 | } while (0) | ||
| 477 | |||
| 478 | #ifdef DEBUG | ||
| 479 | static void | ||
| 480 | extract_number (dest, source) | ||
| 481 | int *dest; | ||
| 482 | unsigned char *source; | ||
| 483 | { | ||
| 484 | int temp = SIGN_EXTEND_CHAR (*(source + 1)); | ||
| 485 | *dest = *source & 0377; | ||
| 486 | *dest += temp << 8; | ||
| 487 | } | ||
| 488 | |||
| 489 | #ifndef EXTRACT_MACROS /* To debug the macros. */ | ||
| 490 | #undef EXTRACT_NUMBER | ||
| 491 | #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | ||
| 492 | #endif /* not EXTRACT_MACROS */ | ||
| 493 | |||
| 494 | #endif /* DEBUG */ | ||
| 495 | |||
| 496 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | ||
| 497 | SOURCE must be an lvalue. */ | ||
| 498 | |||
| 499 | #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | ||
| 500 | do { \ | ||
| 501 | EXTRACT_NUMBER (destination, source); \ | ||
| 502 | (source) += 2; \ | ||
| 503 | } while (0) | ||
| 504 | |||
| 505 | #ifdef DEBUG | ||
| 506 | static void | ||
| 507 | extract_number_and_incr (destination, source) | ||
| 508 | int *destination; | ||
| 509 | unsigned char **source; | ||
| 510 | { | ||
| 511 | extract_number (destination, *source); | ||
| 512 | *source += 2; | ||
| 513 | } | ||
| 514 | |||
| 515 | #ifndef EXTRACT_MACROS | ||
| 516 | #undef EXTRACT_NUMBER_AND_INCR | ||
| 517 | #define EXTRACT_NUMBER_AND_INCR(dest, src) \ | ||
| 518 | extract_number_and_incr (&dest, &src) | ||
| 519 | #endif /* not EXTRACT_MACROS */ | ||
| 520 | |||
| 521 | #endif /* DEBUG */ | ||
| 522 | |||
| 523 | /* If DEBUG is defined, Regex prints many voluminous messages about what | ||
| 524 | it is doing (if the variable `debug' is nonzero). If linked with the | ||
| 525 | main program in `iregex.c', you can enter patterns and strings | ||
| 526 | interactively. And if linked with the main program in `main.c' and | ||
| 527 | the other test files, you can run the already-written tests. */ | ||
| 528 | |||
| 529 | #ifdef DEBUG | ||
| 530 | |||
| 531 | /* We use standard I/O for debugging. */ | ||
| 532 | #include <stdio.h> | ||
| 533 | |||
| 534 | /* It is useful to test things that ``must'' be true when debugging. */ | ||
| 535 | #include <assert.h> | ||
| 536 | |||
| 537 | static int debug = 0; | ||
| 538 | |||
| 539 | #define DEBUG_STATEMENT(e) e | ||
| 540 | #define DEBUG_PRINT1(x) if (debug) printf (x) | ||
| 541 | #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | ||
| 542 | #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | ||
| 543 | #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | ||
| 544 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | ||
| 545 | if (debug) print_partial_compiled_pattern (s, e) | ||
| 546 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | ||
| 547 | if (debug) print_double_string (w, s1, sz1, s2, sz2) | ||
| 548 | |||
| 549 | |||
| 550 | /* Print the fastmap in human-readable form. */ | ||
| 551 | |||
| 552 | void | ||
| 553 | print_fastmap (fastmap) | ||
| 554 | char *fastmap; | ||
| 555 | { | ||
| 556 | unsigned was_a_range = 0; | ||
| 557 | unsigned i = 0; | ||
| 558 | |||
| 559 | while (i < (1 << BYTEWIDTH)) | ||
| 560 | { | ||
| 561 | if (fastmap[i++]) | ||
| 562 | { | ||
| 563 | was_a_range = 0; | ||
| 564 | putchar (i - 1); | ||
| 565 | while (i < (1 << BYTEWIDTH) && fastmap[i]) | ||
| 566 | { | ||
| 567 | was_a_range = 1; | ||
| 568 | i++; | ||
| 569 | } | ||
| 570 | if (was_a_range) | ||
| 571 | { | ||
| 572 | printf ("-"); | ||
| 573 | putchar (i - 1); | ||
| 574 | } | ||
| 575 | } | ||
| 576 | } | ||
| 577 | putchar ('\n'); | ||
| 578 | } | ||
| 579 | |||
| 580 | |||
| 581 | /* Print a compiled pattern string in human-readable form, starting at | ||
| 582 | the START pointer into it and ending just before the pointer END. */ | ||
| 583 | |||
| 584 | void | ||
| 585 | print_partial_compiled_pattern (start, end) | ||
| 586 | unsigned char *start; | ||
| 587 | unsigned char *end; | ||
| 588 | { | ||
| 589 | int mcnt, mcnt2; | ||
| 590 | unsigned char *p = start; | ||
| 591 | unsigned char *pend = end; | ||
| 592 | |||
| 593 | if (start == NULL) | ||
| 594 | { | ||
| 595 | printf ("(null)\n"); | ||
| 596 | return; | ||
| 597 | } | ||
| 598 | |||
| 599 | /* Loop over pattern commands. */ | ||
| 600 | while (p < pend) | ||
| 601 | { | ||
| 602 | printf ("%d:\t", p - start); | ||
| 603 | |||
| 604 | switch ((re_opcode_t) *p++) | ||
| 605 | { | ||
| 606 | case no_op: | ||
| 607 | printf ("/no_op"); | ||
| 608 | break; | ||
| 609 | |||
| 610 | case exactn: | ||
| 611 | mcnt = *p++; | ||
| 612 | printf ("/exactn/%d", mcnt); | ||
| 613 | do | ||
| 614 | { | ||
| 615 | putchar ('/'); | ||
| 616 | putchar (*p++); | ||
| 617 | } | ||
| 618 | while (--mcnt); | ||
| 619 | break; | ||
| 620 | |||
| 621 | case start_memory: | ||
| 622 | mcnt = *p++; | ||
| 623 | printf ("/start_memory/%d/%d", mcnt, *p++); | ||
| 624 | break; | ||
| 625 | |||
| 626 | case stop_memory: | ||
| 627 | mcnt = *p++; | ||
| 628 | printf ("/stop_memory/%d/%d", mcnt, *p++); | ||
| 629 | break; | ||
| 630 | |||
| 631 | case duplicate: | ||
| 632 | printf ("/duplicate/%d", *p++); | ||
| 633 | break; | ||
| 634 | |||
| 635 | case anychar: | ||
| 636 | printf ("/anychar"); | ||
| 637 | break; | ||
| 638 | |||
| 639 | case charset: | ||
| 640 | case charset_not: | ||
| 641 | { | ||
| 642 | register int c, last = -100; | ||
| 643 | register int in_range = 0; | ||
| 644 | |||
| 645 | printf ("/charset [%s", | ||
| 646 | (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | ||
| 647 | |||
| 648 | assert (p + *p < pend); | ||
| 649 | |||
| 650 | for (c = 0; c < 256; c++) | ||
| 651 | if (c / 8 < *p | ||
| 652 | && (p[1 + (c/8)] & (1 << (c % 8)))) | ||
| 653 | { | ||
| 654 | /* Are we starting a range? */ | ||
| 655 | if (last + 1 == c && ! in_range) | ||
| 656 | { | ||
| 657 | putchar ('-'); | ||
| 658 | in_range = 1; | ||
| 659 | } | ||
| 660 | /* Have we broken a range? */ | ||
| 661 | else if (last + 1 != c && in_range) | ||
| 662 | { | ||
| 663 | putchar (last); | ||
| 664 | in_range = 0; | ||
| 665 | } | ||
| 666 | |||
| 667 | if (! in_range) | ||
| 668 | putchar (c); | ||
| 669 | |||
| 670 | last = c; | ||
| 671 | } | ||
| 672 | |||
| 673 | if (in_range) | ||
| 674 | putchar (last); | ||
| 675 | |||
| 676 | putchar (']'); | ||
| 677 | |||
| 678 | p += 1 + *p; | ||
| 679 | } | ||
| 680 | break; | ||
| 681 | |||
| 682 | case begline: | ||
| 683 | printf ("/begline"); | ||
| 684 | break; | ||
| 685 | |||
| 686 | case endline: | ||
| 687 | printf ("/endline"); | ||
| 688 | break; | ||
| 689 | |||
| 690 | case on_failure_jump: | ||
| 691 | extract_number_and_incr (&mcnt, &p); | ||
| 692 | printf ("/on_failure_jump to %d", p + mcnt - start); | ||
| 693 | break; | ||
| 694 | |||
| 695 | case on_failure_keep_string_jump: | ||
| 696 | extract_number_and_incr (&mcnt, &p); | ||
| 697 | printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); | ||
| 698 | break; | ||
| 699 | |||
| 700 | case dummy_failure_jump: | ||
| 701 | extract_number_and_incr (&mcnt, &p); | ||
| 702 | printf ("/dummy_failure_jump to %d", p + mcnt - start); | ||
| 703 | break; | ||
| 704 | |||
| 705 | case push_dummy_failure: | ||
| 706 | printf ("/push_dummy_failure"); | ||
| 707 | break; | ||
| 708 | |||
| 709 | case maybe_pop_jump: | ||
| 710 | extract_number_and_incr (&mcnt, &p); | ||
| 711 | printf ("/maybe_pop_jump to %d", p + mcnt - start); | ||
| 712 | break; | ||
| 713 | |||
| 714 | case pop_failure_jump: | ||
| 715 | extract_number_and_incr (&mcnt, &p); | ||
| 716 | printf ("/pop_failure_jump to %d", p + mcnt - start); | ||
| 717 | break; | ||
| 718 | |||
| 719 | case jump_past_alt: | ||
| 720 | extract_number_and_incr (&mcnt, &p); | ||
| 721 | printf ("/jump_past_alt to %d", p + mcnt - start); | ||
| 722 | break; | ||
| 723 | |||
| 724 | case jump: | ||
| 725 | extract_number_and_incr (&mcnt, &p); | ||
| 726 | printf ("/jump to %d", p + mcnt - start); | ||
| 727 | break; | ||
| 728 | |||
| 729 | case succeed_n: | ||
| 730 | extract_number_and_incr (&mcnt, &p); | ||
| 731 | extract_number_and_incr (&mcnt2, &p); | ||
| 732 | printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); | ||
| 733 | break; | ||
| 734 | |||
| 735 | case jump_n: | ||
| 736 | extract_number_and_incr (&mcnt, &p); | ||
| 737 | extract_number_and_incr (&mcnt2, &p); | ||
| 738 | printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); | ||
| 739 | break; | ||
| 740 | |||
| 741 | case set_number_at: | ||
| 742 | extract_number_and_incr (&mcnt, &p); | ||
| 743 | extract_number_and_incr (&mcnt2, &p); | ||
| 744 | printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); | ||
| 745 | break; | ||
| 746 | |||
| 747 | case wordbound: | ||
| 748 | printf ("/wordbound"); | ||
| 749 | break; | ||
| 750 | |||
| 751 | case notwordbound: | ||
| 752 | printf ("/notwordbound"); | ||
| 753 | break; | ||
| 754 | |||
| 755 | case wordbeg: | ||
| 756 | printf ("/wordbeg"); | ||
| 757 | break; | ||
| 758 | |||
| 759 | case wordend: | ||
| 760 | printf ("/wordend"); | ||
| 761 | |||
| 762 | #ifdef emacs | ||
| 763 | case before_dot: | ||
| 764 | printf ("/before_dot"); | ||
| 765 | break; | ||
| 766 | |||
| 767 | case at_dot: | ||
| 768 | printf ("/at_dot"); | ||
| 769 | break; | ||
| 770 | |||
| 771 | case after_dot: | ||
| 772 | printf ("/after_dot"); | ||
| 773 | break; | ||
| 774 | |||
| 775 | case syntaxspec: | ||
| 776 | printf ("/syntaxspec"); | ||
| 777 | mcnt = *p++; | ||
| 778 | printf ("/%d", mcnt); | ||
| 779 | break; | ||
| 780 | |||
| 781 | case notsyntaxspec: | ||
| 782 | printf ("/notsyntaxspec"); | ||
| 783 | mcnt = *p++; | ||
| 784 | printf ("/%d", mcnt); | ||
| 785 | break; | ||
| 786 | #endif /* emacs */ | ||
| 787 | |||
| 788 | case wordchar: | ||
| 789 | printf ("/wordchar"); | ||
| 790 | break; | ||
| 791 | |||
| 792 | case notwordchar: | ||
| 793 | printf ("/notwordchar"); | ||
| 794 | break; | ||
| 795 | |||
| 796 | case begbuf: | ||
| 797 | printf ("/begbuf"); | ||
| 798 | break; | ||
| 799 | |||
| 800 | case endbuf: | ||
| 801 | printf ("/endbuf"); | ||
| 802 | break; | ||
| 803 | |||
| 804 | default: | ||
| 805 | printf ("?%d", *(p-1)); | ||
| 806 | } | ||
| 807 | |||
| 808 | putchar ('\n'); | ||
| 809 | } | ||
| 810 | |||
| 811 | printf ("%d:\tend of pattern.\n", p - start); | ||
| 812 | } | ||
| 813 | |||
| 814 | |||
| 815 | void | ||
| 816 | print_compiled_pattern (bufp) | ||
| 817 | struct re_pattern_buffer *bufp; | ||
| 818 | { | ||
| 819 | unsigned char *buffer = bufp->buffer; | ||
| 820 | |||
| 821 | print_partial_compiled_pattern (buffer, buffer + bufp->used); | ||
| 822 | printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); | ||
| 823 | |||
| 824 | if (bufp->fastmap_accurate && bufp->fastmap) | ||
| 825 | { | ||
| 826 | printf ("fastmap: "); | ||
| 827 | print_fastmap (bufp->fastmap); | ||
| 828 | } | ||
| 829 | |||
| 830 | printf ("re_nsub: %d\t", bufp->re_nsub); | ||
| 831 | printf ("regs_alloc: %d\t", bufp->regs_allocated); | ||
| 832 | printf ("can_be_null: %d\t", bufp->can_be_null); | ||
| 833 | printf ("newline_anchor: %d\n", bufp->newline_anchor); | ||
| 834 | printf ("no_sub: %d\t", bufp->no_sub); | ||
| 835 | printf ("not_bol: %d\t", bufp->not_bol); | ||
| 836 | printf ("not_eol: %d\t", bufp->not_eol); | ||
| 837 | printf ("syntax: %d\n", bufp->syntax); | ||
| 838 | /* Perhaps we should print the translate table? */ | ||
| 839 | } | ||
| 840 | |||
| 841 | |||
| 842 | void | ||
| 843 | print_double_string (where, string1, size1, string2, size2) | ||
| 844 | const char *where; | ||
| 845 | const char *string1; | ||
| 846 | const char *string2; | ||
| 847 | int size1; | ||
| 848 | int size2; | ||
| 849 | { | ||
| 850 | unsigned this_char; | ||
| 851 | |||
| 852 | if (where == NULL) | ||
| 853 | printf ("(null)"); | ||
| 854 | else | ||
| 855 | { | ||
| 856 | if (FIRST_STRING_P (where)) | ||
| 857 | { | ||
| 858 | for (this_char = where - string1; this_char < size1; this_char++) | ||
| 859 | putchar (string1[this_char]); | ||
| 860 | |||
| 861 | where = string2; | ||
| 862 | } | ||
| 863 | |||
| 864 | for (this_char = where - string2; this_char < size2; this_char++) | ||
| 865 | putchar (string2[this_char]); | ||
| 866 | } | ||
| 867 | } | ||
| 868 | |||
| 869 | #else /* not DEBUG */ | ||
| 870 | |||
| 871 | #undef assert | ||
| 872 | #define assert(e) | ||
| 873 | |||
| 874 | #define DEBUG_STATEMENT(e) | ||
| 875 | #define DEBUG_PRINT1(x) | ||
| 876 | #define DEBUG_PRINT2(x1, x2) | ||
| 877 | #define DEBUG_PRINT3(x1, x2, x3) | ||
| 878 | #define DEBUG_PRINT4(x1, x2, x3, x4) | ||
| 879 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | ||
| 880 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | ||
| 881 | |||
| 882 | #endif /* not DEBUG */ | ||
| 883 | |||
| 884 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | ||
| 885 | also be assigned to arbitrarily: each pattern buffer stores its own | ||
| 886 | syntax, so it can be changed between regex compilations. */ | ||
| 887 | /* This has no initializer because initialized variables in Emacs | ||
| 888 | become read-only after dumping. */ | ||
| 889 | reg_syntax_t re_syntax_options; | ||
| 890 | |||
| 891 | |||
| 892 | /* Specify the precise syntax of regexps for compilation. This provides | ||
| 893 | for compatibility for various utilities which historically have | ||
| 894 | different, incompatible syntaxes. | ||
| 895 | |||
| 896 | The argument SYNTAX is a bit mask comprised of the various bits | ||
| 897 | defined in regex.h. We return the old syntax. */ | ||
| 898 | |||
| 899 | reg_syntax_t | ||
| 900 | re_set_syntax (syntax) | ||
| 901 | reg_syntax_t syntax; | ||
| 902 | { | ||
| 903 | reg_syntax_t ret = re_syntax_options; | ||
| 904 | |||
| 905 | re_syntax_options = syntax; | ||
| 906 | return ret; | ||
| 907 | } | ||
| 908 | |||
| 909 | /* This table gives an error message for each of the error codes listed | ||
| 910 | in regex.h. Obviously the order here has to be same as there. | ||
| 911 | POSIX doesn't require that we do anything for REG_NOERROR, | ||
| 912 | but why not be nice? */ | ||
| 913 | |||
| 914 | static const char *re_error_msgid[] = | ||
| 915 | { "Success", /* REG_NOERROR */ | ||
| 916 | "No match", /* REG_NOMATCH */ | ||
| 917 | "Invalid regular expression", /* REG_BADPAT */ | ||
| 918 | "Invalid collation character", /* REG_ECOLLATE */ | ||
| 919 | "Invalid character class name", /* REG_ECTYPE */ | ||
| 920 | "Trailing backslash", /* REG_EESCAPE */ | ||
| 921 | "Invalid back reference", /* REG_ESUBREG */ | ||
| 922 | "Unmatched [ or [^", /* REG_EBRACK */ | ||
| 923 | "Unmatched ( or \\(", /* REG_EPAREN */ | ||
| 924 | "Unmatched \\{", /* REG_EBRACE */ | ||
| 925 | "Invalid content of \\{\\}", /* REG_BADBR */ | ||
| 926 | "Invalid range end", /* REG_ERANGE */ | ||
| 927 | "Memory exhausted", /* REG_ESPACE */ | ||
| 928 | "Invalid preceding regular expression", /* REG_BADRPT */ | ||
| 929 | "Premature end of regular expression", /* REG_EEND */ | ||
| 930 | "Regular expression too big", /* REG_ESIZE */ | ||
| 931 | "Unmatched ) or \\)", /* REG_ERPAREN */ | ||
| 932 | }; | ||
| 933 | |||
| 934 | /* Avoiding alloca during matching, to placate r_alloc. */ | ||
| 935 | |||
| 936 | /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the | ||
| 937 | searching and matching functions should not call alloca. On some | ||
| 938 | systems, alloca is implemented in terms of malloc, and if we're | ||
| 939 | using the relocating allocator routines, then malloc could cause a | ||
| 940 | relocation, which might (if the strings being searched are in the | ||
| 941 | ralloc heap) shift the data out from underneath the regexp | ||
| 942 | routines. | ||
| 943 | |||
| 944 | Here's another reason to avoid allocation: Emacs | ||
| 945 | processes input from X in a signal handler; processing X input may | ||
| 946 | call malloc; if input arrives while a matching routine is calling | ||
| 947 | malloc, then we're scrod. But Emacs can't just block input while | ||
| 948 | calling matching routines; then we don't notice interrupts when | ||
| 949 | they come in. So, Emacs blocks input around all regexp calls | ||
| 950 | except the matching calls, which it leaves unprotected, in the | ||
| 951 | faith that they will not malloc. */ | ||
| 952 | |||
| 953 | /* Normally, this is fine. */ | ||
| 954 | #define MATCH_MAY_ALLOCATE | ||
| 955 | |||
| 956 | /* When using GNU C, we are not REALLY using the C alloca, no matter | ||
| 957 | what config.h may say. So don't take precautions for it. */ | ||
| 958 | #ifdef __GNUC__ | ||
| 959 | #undef C_ALLOCA | ||
| 960 | #endif | ||
| 961 | |||
| 962 | /* The match routines may not allocate if (1) they would do it with malloc | ||
| 963 | and (2) it's not safe for them to use malloc. | ||
| 964 | Note that if REL_ALLOC is defined, matching would not use malloc for the | ||
| 965 | failure stack, but we would still use it for the register vectors; | ||
| 966 | so REL_ALLOC should not affect this. */ | ||
| 967 | #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) | ||
| 968 | #undef MATCH_MAY_ALLOCATE | ||
| 969 | #endif | ||
| 970 | |||
| 971 | |||
| 972 | /* Failure stack declarations and macros; both re_compile_fastmap and | ||
| 973 | re_match_2 use a failure stack. These have to be macros because of | ||
| 974 | REGEX_ALLOCATE_STACK. */ | ||
| 975 | |||
| 976 | |||
| 977 | /* Number of failure points for which to initially allocate space | ||
| 978 | when matching. If this number is exceeded, we allocate more | ||
| 979 | space, so it is not a hard limit. */ | ||
| 980 | #ifndef INIT_FAILURE_ALLOC | ||
| 981 | #define INIT_FAILURE_ALLOC 5 | ||
| 982 | #endif | ||
| 983 | |||
| 984 | /* Roughly the maximum number of failure points on the stack. Would be | ||
| 985 | exactly that if always used MAX_FAILURE_SPACE each time we failed. | ||
| 986 | This is a variable only so users of regex can assign to it; we never | ||
| 987 | change it ourselves. */ | ||
| 988 | #if defined (MATCH_MAY_ALLOCATE) | ||
| 989 | int re_max_failures = 200000; | ||
| 990 | #else | ||
| 991 | int re_max_failures = 2000; | ||
| 992 | #endif | ||
| 993 | |||
| 994 | union fail_stack_elt | ||
| 995 | { | ||
| 996 | unsigned char *pointer; | ||
| 997 | int integer; | ||
| 998 | }; | ||
| 999 | |||
| 1000 | typedef union fail_stack_elt fail_stack_elt_t; | ||
| 1001 | |||
| 1002 | typedef struct | ||
| 1003 | { | ||
| 1004 | fail_stack_elt_t *stack; | ||
| 1005 | unsigned size; | ||
| 1006 | unsigned avail; /* Offset of next open position. */ | ||
| 1007 | } fail_stack_type; | ||
| 1008 | |||
| 1009 | #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) | ||
| 1010 | #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) | ||
| 1011 | #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) | ||
| 1012 | |||
| 1013 | |||
| 1014 | /* Define macros to initialize and free the failure stack. | ||
| 1015 | Do `return -2' if the alloc fails. */ | ||
| 1016 | |||
| 1017 | #ifdef MATCH_MAY_ALLOCATE | ||
| 1018 | #define INIT_FAIL_STACK() \ | ||
| 1019 | do { \ | ||
| 1020 | fail_stack.stack = (fail_stack_elt_t *) \ | ||
| 1021 | REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ | ||
| 1022 | \ | ||
| 1023 | if (fail_stack.stack == NULL) \ | ||
| 1024 | return -2; \ | ||
| 1025 | \ | ||
| 1026 | fail_stack.size = INIT_FAILURE_ALLOC; \ | ||
| 1027 | fail_stack.avail = 0; \ | ||
| 1028 | } while (0) | ||
| 1029 | |||
| 1030 | #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) | ||
| 1031 | #else | ||
| 1032 | #define INIT_FAIL_STACK() \ | ||
| 1033 | do { \ | ||
| 1034 | fail_stack.avail = 0; \ | ||
| 1035 | } while (0) | ||
| 1036 | |||
| 1037 | #define RESET_FAIL_STACK() | ||
| 1038 | #endif | ||
| 1039 | |||
| 1040 | |||
| 1041 | /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | ||
| 1042 | |||
| 1043 | Return 1 if succeeds, and 0 if either ran out of memory | ||
| 1044 | allocating space for it or it was already too large. | ||
| 1045 | |||
| 1046 | REGEX_REALLOCATE_STACK requires `destination' be declared. */ | ||
| 1047 | |||
| 1048 | #define DOUBLE_FAIL_STACK(fail_stack) \ | ||
| 1049 | ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | ||
| 1050 | ? 0 \ | ||
| 1051 | : ((fail_stack).stack = (fail_stack_elt_t *) \ | ||
| 1052 | REGEX_REALLOCATE_STACK ((fail_stack).stack, \ | ||
| 1053 | (fail_stack).size * sizeof (fail_stack_elt_t), \ | ||
| 1054 | ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | ||
| 1055 | \ | ||
| 1056 | (fail_stack).stack == NULL \ | ||
| 1057 | ? 0 \ | ||
| 1058 | : ((fail_stack).size <<= 1, \ | ||
| 1059 | 1))) | ||
| 1060 | |||
| 1061 | |||
| 1062 | /* Push pointer POINTER on FAIL_STACK. | ||
| 1063 | Return 1 if was able to do so and 0 if ran out of memory allocating | ||
| 1064 | space to do so. */ | ||
| 1065 | #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ | ||
| 1066 | ((FAIL_STACK_FULL () \ | ||
| 1067 | && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ | ||
| 1068 | ? 0 \ | ||
| 1069 | : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ | ||
| 1070 | 1)) | ||
| 1071 | |||
| 1072 | /* Push a pointer value onto the failure stack. | ||
| 1073 | Assumes the variable `fail_stack'. Probably should only | ||
| 1074 | be called from within `PUSH_FAILURE_POINT'. */ | ||
| 1075 | #define PUSH_FAILURE_POINTER(item) \ | ||
| 1076 | fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) | ||
| 1077 | |||
| 1078 | /* This pushes an integer-valued item onto the failure stack. | ||
| 1079 | Assumes the variable `fail_stack'. Probably should only | ||
| 1080 | be called from within `PUSH_FAILURE_POINT'. */ | ||
| 1081 | #define PUSH_FAILURE_INT(item) \ | ||
| 1082 | fail_stack.stack[fail_stack.avail++].integer = (item) | ||
| 1083 | |||
| 1084 | /* Push a fail_stack_elt_t value onto the failure stack. | ||
| 1085 | Assumes the variable `fail_stack'. Probably should only | ||
| 1086 | be called from within `PUSH_FAILURE_POINT'. */ | ||
| 1087 | #define PUSH_FAILURE_ELT(item) \ | ||
| 1088 | fail_stack.stack[fail_stack.avail++] = (item) | ||
| 1089 | |||
| 1090 | /* These three POP... operations complement the three PUSH... operations. | ||
| 1091 | All assume that `fail_stack' is nonempty. */ | ||
| 1092 | #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer | ||
| 1093 | #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer | ||
| 1094 | #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] | ||
| 1095 | |||
| 1096 | /* Used to omit pushing failure point id's when we're not debugging. */ | ||
| 1097 | #ifdef DEBUG | ||
| 1098 | #define DEBUG_PUSH PUSH_FAILURE_INT | ||
| 1099 | #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () | ||
| 1100 | #else | ||
| 1101 | #define DEBUG_PUSH(item) | ||
| 1102 | #define DEBUG_POP(item_addr) | ||
| 1103 | #endif | ||
| 1104 | |||
| 1105 | |||
| 1106 | /* Push the information about the state we will need | ||
| 1107 | if we ever fail back to it. | ||
| 1108 | |||
| 1109 | Requires variables fail_stack, regstart, regend, reg_info, and | ||
| 1110 | num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be | ||
| 1111 | declared. | ||
| 1112 | |||
| 1113 | Does `return FAILURE_CODE' if runs out of memory. */ | ||
| 1114 | |||
| 1115 | #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ | ||
| 1116 | do { \ | ||
| 1117 | char *destination; \ | ||
| 1118 | /* Must be int, so when we don't save any registers, the arithmetic \ | ||
| 1119 | of 0 + -1 isn't done as unsigned. */ \ | ||
| 1120 | int this_reg; \ | ||
| 1121 | \ | ||
| 1122 | DEBUG_STATEMENT (failure_id++); \ | ||
| 1123 | DEBUG_STATEMENT (nfailure_points_pushed++); \ | ||
| 1124 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | ||
| 1125 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | ||
| 1126 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | ||
| 1127 | \ | ||
| 1128 | DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | ||
| 1129 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | ||
| 1130 | \ | ||
| 1131 | /* Ensure we have enough space allocated for what we will push. */ \ | ||
| 1132 | while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | ||
| 1133 | { \ | ||
| 1134 | if (!DOUBLE_FAIL_STACK (fail_stack)) \ | ||
| 1135 | return failure_code; \ | ||
| 1136 | \ | ||
| 1137 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | ||
| 1138 | (fail_stack).size); \ | ||
| 1139 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | ||
| 1140 | } \ | ||
| 1141 | \ | ||
| 1142 | /* Push the info, starting with the registers. */ \ | ||
| 1143 | DEBUG_PRINT1 ("\n"); \ | ||
| 1144 | \ | ||
| 1145 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ | ||
| 1146 | this_reg++) \ | ||
| 1147 | { \ | ||
| 1148 | DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ | ||
| 1149 | DEBUG_STATEMENT (num_regs_pushed++); \ | ||
| 1150 | \ | ||
| 1151 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | ||
| 1152 | PUSH_FAILURE_POINTER (regstart[this_reg]); \ | ||
| 1153 | \ | ||
| 1154 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | ||
| 1155 | PUSH_FAILURE_POINTER (regend[this_reg]); \ | ||
| 1156 | \ | ||
| 1157 | DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ | ||
| 1158 | DEBUG_PRINT2 (" match_null=%d", \ | ||
| 1159 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ | ||
| 1160 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ | ||
| 1161 | DEBUG_PRINT2 (" matched_something=%d", \ | ||
| 1162 | MATCHED_SOMETHING (reg_info[this_reg])); \ | ||
| 1163 | DEBUG_PRINT2 (" ever_matched=%d", \ | ||
| 1164 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ | ||
| 1165 | DEBUG_PRINT1 ("\n"); \ | ||
| 1166 | PUSH_FAILURE_ELT (reg_info[this_reg].word); \ | ||
| 1167 | } \ | ||
| 1168 | \ | ||
| 1169 | DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ | ||
| 1170 | PUSH_FAILURE_INT (lowest_active_reg); \ | ||
| 1171 | \ | ||
| 1172 | DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ | ||
| 1173 | PUSH_FAILURE_INT (highest_active_reg); \ | ||
| 1174 | \ | ||
| 1175 | DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | ||
| 1176 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | ||
| 1177 | PUSH_FAILURE_POINTER (pattern_place); \ | ||
| 1178 | \ | ||
| 1179 | DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | ||
| 1180 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | ||
| 1181 | size2); \ | ||
| 1182 | DEBUG_PRINT1 ("'\n"); \ | ||
| 1183 | PUSH_FAILURE_POINTER (string_place); \ | ||
| 1184 | \ | ||
| 1185 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | ||
| 1186 | DEBUG_PUSH (failure_id); \ | ||
| 1187 | } while (0) | ||
| 1188 | |||
| 1189 | /* This is the number of items that are pushed and popped on the stack | ||
| 1190 | for each register. */ | ||
| 1191 | #define NUM_REG_ITEMS 3 | ||
| 1192 | |||
| 1193 | /* Individual items aside from the registers. */ | ||
| 1194 | #ifdef DEBUG | ||
| 1195 | #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ | ||
| 1196 | #else | ||
| 1197 | #define NUM_NONREG_ITEMS 4 | ||
| 1198 | #endif | ||
| 1199 | |||
| 1200 | /* We push at most this many items on the stack. */ | ||
| 1201 | #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) | ||
| 1202 | |||
| 1203 | /* We actually push this many items. */ | ||
| 1204 | #define NUM_FAILURE_ITEMS \ | ||
| 1205 | ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ | ||
| 1206 | + NUM_NONREG_ITEMS) | ||
| 1207 | |||
| 1208 | /* How many items can still be added to the stack without overflowing it. */ | ||
| 1209 | #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) | ||
| 1210 | |||
| 1211 | |||
| 1212 | /* Pops what PUSH_FAIL_STACK pushes. | ||
| 1213 | |||
| 1214 | We restore into the parameters, all of which should be lvalues: | ||
| 1215 | STR -- the saved data position. | ||
| 1216 | PAT -- the saved pattern position. | ||
| 1217 | LOW_REG, HIGH_REG -- the highest and lowest active registers. | ||
| 1218 | REGSTART, REGEND -- arrays of string positions. | ||
| 1219 | REG_INFO -- array of information about each subexpression. | ||
| 1220 | |||
| 1221 | Also assumes the variables `fail_stack' and (if debugging), `bufp', | ||
| 1222 | `pend', `string1', `size1', `string2', and `size2'. */ | ||
| 1223 | |||
| 1224 | #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ | ||
| 1225 | { \ | ||
| 1226 | DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | ||
| 1227 | int this_reg; \ | ||
| 1228 | const unsigned char *string_temp; \ | ||
| 1229 | \ | ||
| 1230 | assert (!FAIL_STACK_EMPTY ()); \ | ||
| 1231 | \ | ||
| 1232 | /* Remove failure points and point to how many regs pushed. */ \ | ||
| 1233 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | ||
| 1234 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | ||
| 1235 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | ||
| 1236 | \ | ||
| 1237 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | ||
| 1238 | \ | ||
| 1239 | DEBUG_POP (&failure_id); \ | ||
| 1240 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | ||
| 1241 | \ | ||
| 1242 | /* If the saved string location is NULL, it came from an \ | ||
| 1243 | on_failure_keep_string_jump opcode, and we want to throw away the \ | ||
| 1244 | saved NULL, thus retaining our current position in the string. */ \ | ||
| 1245 | string_temp = POP_FAILURE_POINTER (); \ | ||
| 1246 | if (string_temp != NULL) \ | ||
| 1247 | str = (const char *) string_temp; \ | ||
| 1248 | \ | ||
| 1249 | DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ | ||
| 1250 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | ||
| 1251 | DEBUG_PRINT1 ("'\n"); \ | ||
| 1252 | \ | ||
| 1253 | pat = (unsigned char *) POP_FAILURE_POINTER (); \ | ||
| 1254 | DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ | ||
| 1255 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | ||
| 1256 | \ | ||
| 1257 | /* Restore register info. */ \ | ||
| 1258 | high_reg = (unsigned) POP_FAILURE_INT (); \ | ||
| 1259 | DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ | ||
| 1260 | \ | ||
| 1261 | low_reg = (unsigned) POP_FAILURE_INT (); \ | ||
| 1262 | DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ | ||
| 1263 | \ | ||
| 1264 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | ||
| 1265 | { \ | ||
| 1266 | DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | ||
| 1267 | \ | ||
| 1268 | reg_info[this_reg].word = POP_FAILURE_ELT (); \ | ||
| 1269 | DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ | ||
| 1270 | \ | ||
| 1271 | regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ | ||
| 1272 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | ||
| 1273 | \ | ||
| 1274 | regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ | ||
| 1275 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | ||
| 1276 | } \ | ||
| 1277 | \ | ||
| 1278 | set_regs_matched_done = 0; \ | ||
| 1279 | DEBUG_STATEMENT (nfailure_points_popped++); \ | ||
| 1280 | } /* POP_FAILURE_POINT */ | ||
| 1281 | |||
| 1282 | |||
| 1283 | |||
| 1284 | /* Structure for per-register (a.k.a. per-group) information. | ||
| 1285 | Other register information, such as the | ||
| 1286 | starting and ending positions (which are addresses), and the list of | ||
| 1287 | inner groups (which is a bits list) are maintained in separate | ||
| 1288 | variables. | ||
| 1289 | |||
| 1290 | We are making a (strictly speaking) nonportable assumption here: that | ||
| 1291 | the compiler will pack our bit fields into something that fits into | ||
| 1292 | the type of `word', i.e., is something that fits into one item on the | ||
| 1293 | failure stack. */ | ||
| 1294 | |||
| 1295 | typedef union | ||
| 1296 | { | ||
| 1297 | fail_stack_elt_t word; | ||
| 1298 | struct | ||
| 1299 | { | ||
| 1300 | /* This field is one if this group can match the empty string, | ||
| 1301 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | ||
| 1302 | #define MATCH_NULL_UNSET_VALUE 3 | ||
| 1303 | unsigned match_null_string_p : 2; | ||
| 1304 | unsigned is_active : 1; | ||
| 1305 | unsigned matched_something : 1; | ||
| 1306 | unsigned ever_matched_something : 1; | ||
| 1307 | } bits; | ||
| 1308 | } register_info_type; | ||
| 1309 | |||
| 1310 | #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) | ||
| 1311 | #define IS_ACTIVE(R) ((R).bits.is_active) | ||
| 1312 | #define MATCHED_SOMETHING(R) ((R).bits.matched_something) | ||
| 1313 | #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) | ||
| 1314 | |||
| 1315 | |||
| 1316 | /* Call this when have matched a real character; it sets `matched' flags | ||
| 1317 | for the subexpressions which we are currently inside. Also records | ||
| 1318 | that those subexprs have matched. */ | ||
| 1319 | #define SET_REGS_MATCHED() \ | ||
| 1320 | do \ | ||
| 1321 | { \ | ||
| 1322 | if (!set_regs_matched_done) \ | ||
| 1323 | { \ | ||
| 1324 | unsigned r; \ | ||
| 1325 | set_regs_matched_done = 1; \ | ||
| 1326 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \ | ||
| 1327 | { \ | ||
| 1328 | MATCHED_SOMETHING (reg_info[r]) \ | ||
| 1329 | = EVER_MATCHED_SOMETHING (reg_info[r]) \ | ||
| 1330 | = 1; \ | ||
| 1331 | } \ | ||
| 1332 | } \ | ||
| 1333 | } \ | ||
| 1334 | while (0) | ||
| 1335 | |||
| 1336 | /* Registers are set to a sentinel when they haven't yet matched. */ | ||
| 1337 | static char reg_unset_dummy; | ||
| 1338 | #define REG_UNSET_VALUE (®_unset_dummy) | ||
| 1339 | #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) | ||
| 1340 | |||
| 1341 | /* Subroutine declarations and macros for regex_compile. */ | ||
| 1342 | |||
| 1343 | static void store_op1 (), store_op2 (); | ||
| 1344 | static void insert_op1 (), insert_op2 (); | ||
| 1345 | static boolean at_begline_loc_p (), at_endline_loc_p (); | ||
| 1346 | static boolean group_in_compile_stack (); | ||
| 1347 | static reg_errcode_t compile_range (); | ||
| 1348 | |||
| 1349 | /* Fetch the next character in the uncompiled pattern---translating it | ||
| 1350 | if necessary. Also cast from a signed character in the constant | ||
| 1351 | string passed to us by the user to an unsigned char that we can use | ||
| 1352 | as an array index (in, e.g., `translate'). */ | ||
| 1353 | #define PATFETCH(c) \ | ||
| 1354 | do {if (p == pend) return REG_EEND; \ | ||
| 1355 | c = (unsigned char) *p++; \ | ||
| 1356 | if (translate) c = translate[c]; \ | ||
| 1357 | } while (0) | ||
| 1358 | |||
| 1359 | /* Fetch the next character in the uncompiled pattern, with no | ||
| 1360 | translation. */ | ||
| 1361 | #define PATFETCH_RAW(c) \ | ||
| 1362 | do {if (p == pend) return REG_EEND; \ | ||
| 1363 | c = (unsigned char) *p++; \ | ||
| 1364 | } while (0) | ||
| 1365 | |||
| 1366 | /* Go backwards one character in the pattern. */ | ||
| 1367 | #define PATUNFETCH p-- | ||
| 1368 | |||
| 1369 | |||
| 1370 | /* If `translate' is non-null, return translate[D], else just D. We | ||
| 1371 | cast the subscript to translate because some data is declared as | ||
| 1372 | `char *', to avoid warnings when a string constant is passed. But | ||
| 1373 | when we use a character as a subscript we must make it unsigned. */ | ||
| 1374 | #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) | ||
| 1375 | |||
| 1376 | |||
| 1377 | /* Macros for outputting the compiled pattern into `buffer'. */ | ||
| 1378 | |||
| 1379 | /* If the buffer isn't allocated when it comes in, use this. */ | ||
| 1380 | #define INIT_BUF_SIZE 32 | ||
| 1381 | |||
| 1382 | /* Make sure we have at least N more bytes of space in buffer. */ | ||
| 1383 | #define GET_BUFFER_SPACE(n) \ | ||
| 1384 | while (b - bufp->buffer + (n) > bufp->allocated) \ | ||
| 1385 | EXTEND_BUFFER () | ||
| 1386 | |||
| 1387 | /* Make sure we have one more byte of buffer space and then add C to it. */ | ||
| 1388 | #define BUF_PUSH(c) \ | ||
| 1389 | do { \ | ||
| 1390 | GET_BUFFER_SPACE (1); \ | ||
| 1391 | *b++ = (unsigned char) (c); \ | ||
| 1392 | } while (0) | ||
| 1393 | |||
| 1394 | |||
| 1395 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | ||
| 1396 | #define BUF_PUSH_2(c1, c2) \ | ||
| 1397 | do { \ | ||
| 1398 | GET_BUFFER_SPACE (2); \ | ||
| 1399 | *b++ = (unsigned char) (c1); \ | ||
| 1400 | *b++ = (unsigned char) (c2); \ | ||
| 1401 | } while (0) | ||
| 1402 | |||
| 1403 | |||
| 1404 | /* As with BUF_PUSH_2, except for three bytes. */ | ||
| 1405 | #define BUF_PUSH_3(c1, c2, c3) \ | ||
| 1406 | do { \ | ||
| 1407 | GET_BUFFER_SPACE (3); \ | ||
| 1408 | *b++ = (unsigned char) (c1); \ | ||
| 1409 | *b++ = (unsigned char) (c2); \ | ||
| 1410 | *b++ = (unsigned char) (c3); \ | ||
| 1411 | } while (0) | ||
| 1412 | |||
| 1413 | |||
| 1414 | /* Store a jump with opcode OP at LOC to location TO. We store a | ||
| 1415 | relative address offset by the three bytes the jump itself occupies. */ | ||
| 1416 | #define STORE_JUMP(op, loc, to) \ | ||
| 1417 | store_op1 (op, loc, (to) - (loc) - 3) | ||
| 1418 | |||
| 1419 | /* Likewise, for a two-argument jump. */ | ||
| 1420 | #define STORE_JUMP2(op, loc, to, arg) \ | ||
| 1421 | store_op2 (op, loc, (to) - (loc) - 3, arg) | ||
| 1422 | |||
| 1423 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | ||
| 1424 | #define INSERT_JUMP(op, loc, to) \ | ||
| 1425 | insert_op1 (op, loc, (to) - (loc) - 3, b) | ||
| 1426 | |||
| 1427 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | ||
| 1428 | #define INSERT_JUMP2(op, loc, to, arg) \ | ||
| 1429 | insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | ||
| 1430 | |||
| 1431 | |||
| 1432 | /* This is not an arbitrary limit: the arguments which represent offsets | ||
| 1433 | into the pattern are two bytes long. So if 2^16 bytes turns out to | ||
| 1434 | be too small, many things would have to change. */ | ||
| 1435 | #define MAX_BUF_SIZE (1L << 16) | ||
| 1436 | |||
| 1437 | |||
| 1438 | /* Extend the buffer by twice its current size via realloc and | ||
| 1439 | reset the pointers that pointed into the old block to point to the | ||
| 1440 | correct places in the new one. If extending the buffer results in it | ||
| 1441 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | ||
| 1442 | #define EXTEND_BUFFER() \ | ||
| 1443 | do { \ | ||
| 1444 | unsigned char *old_buffer = bufp->buffer; \ | ||
| 1445 | if (bufp->allocated == MAX_BUF_SIZE) \ | ||
| 1446 | return REG_ESIZE; \ | ||
| 1447 | bufp->allocated <<= 1; \ | ||
| 1448 | if (bufp->allocated > MAX_BUF_SIZE) \ | ||
| 1449 | bufp->allocated = MAX_BUF_SIZE; \ | ||
| 1450 | bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | ||
| 1451 | if (bufp->buffer == NULL) \ | ||
| 1452 | return REG_ESPACE; \ | ||
| 1453 | /* If the buffer moved, move all the pointers into it. */ \ | ||
| 1454 | if (old_buffer != bufp->buffer) \ | ||
| 1455 | { \ | ||
| 1456 | b = (b - old_buffer) + bufp->buffer; \ | ||
| 1457 | begalt = (begalt - old_buffer) + bufp->buffer; \ | ||
| 1458 | if (fixup_alt_jump) \ | ||
| 1459 | fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | ||
| 1460 | if (laststart) \ | ||
| 1461 | laststart = (laststart - old_buffer) + bufp->buffer; \ | ||
| 1462 | if (pending_exact) \ | ||
| 1463 | pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | ||
| 1464 | } \ | ||
| 1465 | } while (0) | ||
| 1466 | |||
| 1467 | |||
| 1468 | /* Since we have one byte reserved for the register number argument to | ||
| 1469 | {start,stop}_memory, the maximum number of groups we can report | ||
| 1470 | things about is what fits in that byte. */ | ||
| 1471 | #define MAX_REGNUM 255 | ||
| 1472 | |||
| 1473 | /* But patterns can have more than `MAX_REGNUM' registers. We just | ||
| 1474 | ignore the excess. */ | ||
| 1475 | typedef unsigned regnum_t; | ||
| 1476 | |||
| 1477 | |||
| 1478 | /* Macros for the compile stack. */ | ||
| 1479 | |||
| 1480 | /* Since offsets can go either forwards or backwards, this type needs to | ||
| 1481 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | ||
| 1482 | typedef int pattern_offset_t; | ||
| 1483 | |||
| 1484 | typedef struct | ||
| 1485 | { | ||
| 1486 | pattern_offset_t begalt_offset; | ||
| 1487 | pattern_offset_t fixup_alt_jump; | ||
| 1488 | pattern_offset_t inner_group_offset; | ||
| 1489 | pattern_offset_t laststart_offset; | ||
| 1490 | regnum_t regnum; | ||
| 1491 | } compile_stack_elt_t; | ||
| 1492 | |||
| 1493 | |||
| 1494 | typedef struct | ||
| 1495 | { | ||
| 1496 | compile_stack_elt_t *stack; | ||
| 1497 | unsigned size; | ||
| 1498 | unsigned avail; /* Offset of next open position. */ | ||
| 1499 | } compile_stack_type; | ||
| 1500 | |||
| 1501 | |||
| 1502 | #define INIT_COMPILE_STACK_SIZE 32 | ||
| 1503 | |||
| 1504 | #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | ||
| 1505 | #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | ||
| 1506 | |||
| 1507 | /* The next available element. */ | ||
| 1508 | #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | ||
| 1509 | |||
| 1510 | |||
| 1511 | /* Set the bit for character C in a list. */ | ||
| 1512 | #define SET_LIST_BIT(c) \ | ||
| 1513 | (b[((unsigned char) (c)) / BYTEWIDTH] \ | ||
| 1514 | |= 1 << (((unsigned char) c) % BYTEWIDTH)) | ||
| 1515 | |||
| 1516 | |||
| 1517 | /* Get the next unsigned number in the uncompiled pattern. */ | ||
| 1518 | #define GET_UNSIGNED_NUMBER(num) \ | ||
| 1519 | { if (p != pend) \ | ||
| 1520 | { \ | ||
| 1521 | PATFETCH (c); \ | ||
| 1522 | while (ISDIGIT (c)) \ | ||
| 1523 | { \ | ||
| 1524 | if (num < 0) \ | ||
| 1525 | num = 0; \ | ||
| 1526 | num = num * 10 + c - '0'; \ | ||
| 1527 | if (p == pend) \ | ||
| 1528 | break; \ | ||
| 1529 | PATFETCH (c); \ | ||
| 1530 | } \ | ||
| 1531 | } \ | ||
| 1532 | } | ||
| 1533 | |||
| 1534 | #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | ||
| 1535 | |||
| 1536 | #define IS_CHAR_CLASS(string) \ | ||
| 1537 | (STREQ (string, "alpha") || STREQ (string, "upper") \ | ||
| 1538 | || STREQ (string, "lower") || STREQ (string, "digit") \ | ||
| 1539 | || STREQ (string, "alnum") || STREQ (string, "xdigit") \ | ||
| 1540 | || STREQ (string, "space") || STREQ (string, "print") \ | ||
| 1541 | || STREQ (string, "punct") || STREQ (string, "graph") \ | ||
| 1542 | || STREQ (string, "cntrl") || STREQ (string, "blank")) | ||
| 1543 | |||
| 1544 | #ifndef MATCH_MAY_ALLOCATE | ||
| 1545 | |||
| 1546 | /* If we cannot allocate large objects within re_match_2_internal, | ||
| 1547 | we make the fail stack and register vectors global. | ||
| 1548 | The fail stack, we grow to the maximum size when a regexp | ||
| 1549 | is compiled. | ||
| 1550 | The register vectors, we adjust in size each time we | ||
| 1551 | compile a regexp, according to the number of registers it needs. */ | ||
| 1552 | |||
| 1553 | static fail_stack_type fail_stack; | ||
| 1554 | |||
| 1555 | /* Size with which the following vectors are currently allocated. | ||
| 1556 | That is so we can make them bigger as needed, | ||
| 1557 | but never make them smaller. */ | ||
| 1558 | static int regs_allocated_size; | ||
| 1559 | |||
| 1560 | static const char ** regstart, ** regend; | ||
| 1561 | static const char ** old_regstart, ** old_regend; | ||
| 1562 | static const char **best_regstart, **best_regend; | ||
| 1563 | static register_info_type *reg_info; | ||
| 1564 | static const char **reg_dummy; | ||
| 1565 | static register_info_type *reg_info_dummy; | ||
| 1566 | |||
| 1567 | /* Make the register vectors big enough for NUM_REGS registers, | ||
| 1568 | but don't make them smaller. */ | ||
| 1569 | |||
| 1570 | static | ||
| 1571 | regex_grow_registers (num_regs) | ||
| 1572 | int num_regs; | ||
| 1573 | { | ||
| 1574 | if (num_regs > regs_allocated_size) | ||
| 1575 | { | ||
| 1576 | RETALLOC_IF (regstart, num_regs, const char *); | ||
| 1577 | RETALLOC_IF (regend, num_regs, const char *); | ||
| 1578 | RETALLOC_IF (old_regstart, num_regs, const char *); | ||
| 1579 | RETALLOC_IF (old_regend, num_regs, const char *); | ||
| 1580 | RETALLOC_IF (best_regstart, num_regs, const char *); | ||
| 1581 | RETALLOC_IF (best_regend, num_regs, const char *); | ||
| 1582 | RETALLOC_IF (reg_info, num_regs, register_info_type); | ||
| 1583 | RETALLOC_IF (reg_dummy, num_regs, const char *); | ||
| 1584 | RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); | ||
| 1585 | |||
| 1586 | regs_allocated_size = num_regs; | ||
| 1587 | } | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | #endif /* not MATCH_MAY_ALLOCATE */ | ||
| 1591 | |||
| 1592 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | ||
| 1593 | Returns one of error codes defined in `regex.h', or zero for success. | ||
| 1594 | |||
| 1595 | Assumes the `allocated' (and perhaps `buffer') and `translate' | ||
| 1596 | fields are set in BUFP on entry. | ||
| 1597 | |||
| 1598 | If it succeeds, results are put in BUFP (if it returns an error, the | ||
| 1599 | contents of BUFP are undefined): | ||
| 1600 | `buffer' is the compiled pattern; | ||
| 1601 | `syntax' is set to SYNTAX; | ||
| 1602 | `used' is set to the length of the compiled pattern; | ||
| 1603 | `fastmap_accurate' is zero; | ||
| 1604 | `re_nsub' is the number of subexpressions in PATTERN; | ||
| 1605 | `not_bol' and `not_eol' are zero; | ||
| 1606 | |||
| 1607 | The `fastmap' and `newline_anchor' fields are neither | ||
| 1608 | examined nor set. */ | ||
| 1609 | |||
| 1610 | /* Return, freeing storage we allocated. */ | ||
| 1611 | #define FREE_STACK_RETURN(value) \ | ||
| 1612 | return (free (compile_stack.stack), value) | ||
| 1613 | |||
| 1614 | static reg_errcode_t | ||
| 1615 | regex_compile (pattern, size, syntax, bufp) | ||
| 1616 | const char *pattern; | ||
| 1617 | int size; | ||
| 1618 | reg_syntax_t syntax; | ||
| 1619 | struct re_pattern_buffer *bufp; | ||
| 1620 | { | ||
| 1621 | /* We fetch characters from PATTERN here. Even though PATTERN is | ||
| 1622 | `char *' (i.e., signed), we declare these variables as unsigned, so | ||
| 1623 | they can be reliably used as array indices. */ | ||
| 1624 | register unsigned char c, c1; | ||
| 1625 | |||
| 1626 | /* A random temporary spot in PATTERN. */ | ||
| 1627 | const char *p1; | ||
| 1628 | |||
| 1629 | /* Points to the end of the buffer, where we should append. */ | ||
| 1630 | register unsigned char *b; | ||
| 1631 | |||
| 1632 | /* Keeps track of unclosed groups. */ | ||
| 1633 | compile_stack_type compile_stack; | ||
| 1634 | |||
| 1635 | /* Points to the current (ending) position in the pattern. */ | ||
| 1636 | const char *p = pattern; | ||
| 1637 | const char *pend = pattern + size; | ||
| 1638 | |||
| 1639 | /* How to translate the characters in the pattern. */ | ||
| 1640 | char *translate = bufp->translate; | ||
| 1641 | |||
| 1642 | /* Address of the count-byte of the most recently inserted `exactn' | ||
| 1643 | command. This makes it possible to tell if a new exact-match | ||
| 1644 | character can be added to that command or if the character requires | ||
| 1645 | a new `exactn' command. */ | ||
| 1646 | unsigned char *pending_exact = 0; | ||
| 1647 | |||
| 1648 | /* Address of start of the most recently finished expression. | ||
| 1649 | This tells, e.g., postfix * where to find the start of its | ||
| 1650 | operand. Reset at the beginning of groups and alternatives. */ | ||
| 1651 | unsigned char *laststart = 0; | ||
| 1652 | |||
| 1653 | /* Address of beginning of regexp, or inside of last group. */ | ||
| 1654 | unsigned char *begalt; | ||
| 1655 | |||
| 1656 | /* Place in the uncompiled pattern (i.e., the {) to | ||
| 1657 | which to go back if the interval is invalid. */ | ||
| 1658 | const char *beg_interval; | ||
| 1659 | |||
| 1660 | /* Address of the place where a forward jump should go to the end of | ||
| 1661 | the containing expression. Each alternative of an `or' -- except the | ||
| 1662 | last -- ends with a forward jump of this sort. */ | ||
| 1663 | unsigned char *fixup_alt_jump = 0; | ||
| 1664 | |||
| 1665 | /* Counts open-groups as they are encountered. Remembered for the | ||
| 1666 | matching close-group on the compile stack, so the same register | ||
| 1667 | number is put in the stop_memory as the start_memory. */ | ||
| 1668 | regnum_t regnum = 0; | ||
| 1669 | |||
| 1670 | #ifdef DEBUG | ||
| 1671 | DEBUG_PRINT1 ("\nCompiling pattern: "); | ||
| 1672 | if (debug) | ||
| 1673 | { | ||
| 1674 | unsigned debug_count; | ||
| 1675 | |||
| 1676 | for (debug_count = 0; debug_count < size; debug_count++) | ||
| 1677 | putchar (pattern[debug_count]); | ||
| 1678 | putchar ('\n'); | ||
| 1679 | } | ||
| 1680 | #endif /* DEBUG */ | ||
| 1681 | |||
| 1682 | /* Initialize the compile stack. */ | ||
| 1683 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); | ||
| 1684 | if (compile_stack.stack == NULL) | ||
| 1685 | return REG_ESPACE; | ||
| 1686 | |||
| 1687 | compile_stack.size = INIT_COMPILE_STACK_SIZE; | ||
| 1688 | compile_stack.avail = 0; | ||
| 1689 | |||
| 1690 | /* Initialize the pattern buffer. */ | ||
| 1691 | bufp->syntax = syntax; | ||
| 1692 | bufp->fastmap_accurate = 0; | ||
| 1693 | bufp->not_bol = bufp->not_eol = 0; | ||
| 1694 | |||
| 1695 | /* Set `used' to zero, so that if we return an error, the pattern | ||
| 1696 | printer (for debugging) will think there's no pattern. We reset it | ||
| 1697 | at the end. */ | ||
| 1698 | bufp->used = 0; | ||
| 1699 | |||
| 1700 | /* Always count groups, whether or not bufp->no_sub is set. */ | ||
| 1701 | bufp->re_nsub = 0; | ||
| 1702 | |||
| 1703 | #if !defined (emacs) && !defined (SYNTAX_TABLE) | ||
| 1704 | /* Initialize the syntax table. */ | ||
| 1705 | init_syntax_once (); | ||
| 1706 | #endif | ||
| 1707 | |||
| 1708 | if (bufp->allocated == 0) | ||
| 1709 | { | ||
| 1710 | if (bufp->buffer) | ||
| 1711 | { /* If zero allocated, but buffer is non-null, try to realloc | ||
| 1712 | enough space. This loses if buffer's address is bogus, but | ||
| 1713 | that is the user's responsibility. */ | ||
| 1714 | RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | ||
| 1715 | } | ||
| 1716 | else | ||
| 1717 | { /* Caller did not allocate a buffer. Do it for them. */ | ||
| 1718 | bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | ||
| 1719 | } | ||
| 1720 | if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); | ||
| 1721 | |||
| 1722 | bufp->allocated = INIT_BUF_SIZE; | ||
| 1723 | } | ||
| 1724 | |||
| 1725 | begalt = b = bufp->buffer; | ||
| 1726 | |||
| 1727 | /* Loop through the uncompiled pattern until we're at the end. */ | ||
| 1728 | while (p != pend) | ||
| 1729 | { | ||
| 1730 | PATFETCH (c); | ||
| 1731 | |||
| 1732 | switch (c) | ||
| 1733 | { | ||
| 1734 | case '^': | ||
| 1735 | { | ||
| 1736 | if ( /* If at start of pattern, it's an operator. */ | ||
| 1737 | p == pattern + 1 | ||
| 1738 | /* If context independent, it's an operator. */ | ||
| 1739 | || syntax & RE_CONTEXT_INDEP_ANCHORS | ||
| 1740 | /* Otherwise, depends on what's come before. */ | ||
| 1741 | || at_begline_loc_p (pattern, p, syntax)) | ||
| 1742 | BUF_PUSH (begline); | ||
| 1743 | else | ||
| 1744 | goto normal_char; | ||
| 1745 | } | ||
| 1746 | break; | ||
| 1747 | |||
| 1748 | |||
| 1749 | case '$': | ||
| 1750 | { | ||
| 1751 | if ( /* If at end of pattern, it's an operator. */ | ||
| 1752 | p == pend | ||
| 1753 | /* If context independent, it's an operator. */ | ||
| 1754 | || syntax & RE_CONTEXT_INDEP_ANCHORS | ||
| 1755 | /* Otherwise, depends on what's next. */ | ||
| 1756 | || at_endline_loc_p (p, pend, syntax)) | ||
| 1757 | BUF_PUSH (endline); | ||
| 1758 | else | ||
| 1759 | goto normal_char; | ||
| 1760 | } | ||
| 1761 | break; | ||
| 1762 | |||
| 1763 | |||
| 1764 | case '+': | ||
| 1765 | case '?': | ||
| 1766 | if ((syntax & RE_BK_PLUS_QM) | ||
| 1767 | || (syntax & RE_LIMITED_OPS)) | ||
| 1768 | goto normal_char; | ||
| 1769 | handle_plus: | ||
| 1770 | case '*': | ||
| 1771 | /* If there is no previous pattern... */ | ||
| 1772 | if (!laststart) | ||
| 1773 | { | ||
| 1774 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
| 1775 | FREE_STACK_RETURN (REG_BADRPT); | ||
| 1776 | else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | ||
| 1777 | goto normal_char; | ||
| 1778 | } | ||
| 1779 | |||
| 1780 | { | ||
| 1781 | /* Are we optimizing this jump? */ | ||
| 1782 | boolean keep_string_p = false; | ||
| 1783 | |||
| 1784 | /* 1 means zero (many) matches is allowed. */ | ||
| 1785 | char zero_times_ok = 0, many_times_ok = 0; | ||
| 1786 | |||
| 1787 | /* If there is a sequence of repetition chars, collapse it | ||
| 1788 | down to just one (the right one). We can't combine | ||
| 1789 | interval operators with these because of, e.g., `a{2}*', | ||
| 1790 | which should only match an even number of `a's. */ | ||
| 1791 | |||
| 1792 | for (;;) | ||
| 1793 | { | ||
| 1794 | zero_times_ok |= c != '+'; | ||
| 1795 | many_times_ok |= c != '?'; | ||
| 1796 | |||
| 1797 | if (p == pend) | ||
| 1798 | break; | ||
| 1799 | |||
| 1800 | PATFETCH (c); | ||
| 1801 | |||
| 1802 | if (c == '*' | ||
| 1803 | || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | ||
| 1804 | ; | ||
| 1805 | |||
| 1806 | else if (syntax & RE_BK_PLUS_QM && c == '\\') | ||
| 1807 | { | ||
| 1808 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | ||
| 1809 | |||
| 1810 | PATFETCH (c1); | ||
| 1811 | if (!(c1 == '+' || c1 == '?')) | ||
| 1812 | { | ||
| 1813 | PATUNFETCH; | ||
| 1814 | PATUNFETCH; | ||
| 1815 | break; | ||
| 1816 | } | ||
| 1817 | |||
| 1818 | c = c1; | ||
| 1819 | } | ||
| 1820 | else | ||
| 1821 | { | ||
| 1822 | PATUNFETCH; | ||
| 1823 | break; | ||
| 1824 | } | ||
| 1825 | |||
| 1826 | /* If we get here, we found another repeat character. */ | ||
| 1827 | } | ||
| 1828 | |||
| 1829 | /* Star, etc. applied to an empty pattern is equivalent | ||
| 1830 | to an empty pattern. */ | ||
| 1831 | if (!laststart) | ||
| 1832 | break; | ||
| 1833 | |||
| 1834 | /* Now we know whether or not zero matches is allowed | ||
| 1835 | and also whether or not two or more matches is allowed. */ | ||
| 1836 | if (many_times_ok) | ||
| 1837 | { /* More than one repetition is allowed, so put in at the | ||
| 1838 | end a backward relative jump from `b' to before the next | ||
| 1839 | jump we're going to put in below (which jumps from | ||
| 1840 | laststart to after this jump). | ||
| 1841 | |||
| 1842 | But if we are at the `*' in the exact sequence `.*\n', | ||
| 1843 | insert an unconditional jump backwards to the ., | ||
| 1844 | instead of the beginning of the loop. This way we only | ||
| 1845 | push a failure point once, instead of every time | ||
| 1846 | through the loop. */ | ||
| 1847 | assert (p - 1 > pattern); | ||
| 1848 | |||
| 1849 | /* Allocate the space for the jump. */ | ||
| 1850 | GET_BUFFER_SPACE (3); | ||
| 1851 | |||
| 1852 | /* We know we are not at the first character of the pattern, | ||
| 1853 | because laststart was nonzero. And we've already | ||
| 1854 | incremented `p', by the way, to be the character after | ||
| 1855 | the `*'. Do we have to do something analogous here | ||
| 1856 | for null bytes, because of RE_DOT_NOT_NULL? */ | ||
| 1857 | if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | ||
| 1858 | && zero_times_ok | ||
| 1859 | && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') | ||
| 1860 | && !(syntax & RE_DOT_NEWLINE)) | ||
| 1861 | { /* We have .*\n. */ | ||
| 1862 | STORE_JUMP (jump, b, laststart); | ||
| 1863 | keep_string_p = true; | ||
| 1864 | } | ||
| 1865 | else | ||
| 1866 | /* Anything else. */ | ||
| 1867 | STORE_JUMP (maybe_pop_jump, b, laststart - 3); | ||
| 1868 | |||
| 1869 | /* We've added more stuff to the buffer. */ | ||
| 1870 | b += 3; | ||
| 1871 | } | ||
| 1872 | |||
| 1873 | /* On failure, jump from laststart to b + 3, which will be the | ||
| 1874 | end of the buffer after this jump is inserted. */ | ||
| 1875 | GET_BUFFER_SPACE (3); | ||
| 1876 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | ||
| 1877 | : on_failure_jump, | ||
| 1878 | laststart, b + 3); | ||
| 1879 | pending_exact = 0; | ||
| 1880 | b += 3; | ||
| 1881 | |||
| 1882 | if (!zero_times_ok) | ||
| 1883 | { | ||
| 1884 | /* At least one repetition is required, so insert a | ||
| 1885 | `dummy_failure_jump' before the initial | ||
| 1886 | `on_failure_jump' instruction of the loop. This | ||
| 1887 | effects a skip over that instruction the first time | ||
| 1888 | we hit that loop. */ | ||
| 1889 | GET_BUFFER_SPACE (3); | ||
| 1890 | INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | ||
| 1891 | b += 3; | ||
| 1892 | } | ||
| 1893 | } | ||
| 1894 | break; | ||
| 1895 | |||
| 1896 | |||
| 1897 | case '.': | ||
| 1898 | laststart = b; | ||
| 1899 | BUF_PUSH (anychar); | ||
| 1900 | break; | ||
| 1901 | |||
| 1902 | |||
| 1903 | case '[': | ||
| 1904 | { | ||
| 1905 | boolean had_char_class = false; | ||
| 1906 | |||
| 1907 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | ||
| 1908 | |||
| 1909 | /* Ensure that we have enough space to push a charset: the | ||
| 1910 | opcode, the length count, and the bitset; 34 bytes in all. */ | ||
| 1911 | GET_BUFFER_SPACE (34); | ||
| 1912 | |||
| 1913 | laststart = b; | ||
| 1914 | |||
| 1915 | /* We test `*p == '^' twice, instead of using an if | ||
| 1916 | statement, so we only need one BUF_PUSH. */ | ||
| 1917 | BUF_PUSH (*p == '^' ? charset_not : charset); | ||
| 1918 | if (*p == '^') | ||
| 1919 | p++; | ||
| 1920 | |||
| 1921 | /* Remember the first position in the bracket expression. */ | ||
| 1922 | p1 = p; | ||
| 1923 | |||
| 1924 | /* Push the number of bytes in the bitmap. */ | ||
| 1925 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | ||
| 1926 | |||
| 1927 | /* Clear the whole map. */ | ||
| 1928 | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); | ||
| 1929 | |||
| 1930 | /* charset_not matches newline according to a syntax bit. */ | ||
| 1931 | if ((re_opcode_t) b[-2] == charset_not | ||
| 1932 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | ||
| 1933 | SET_LIST_BIT ('\n'); | ||
| 1934 | |||
| 1935 | /* Read in characters and ranges, setting map bits. */ | ||
| 1936 | for (;;) | ||
| 1937 | { | ||
| 1938 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | ||
| 1939 | |||
| 1940 | PATFETCH (c); | ||
| 1941 | |||
| 1942 | /* \ might escape characters inside [...] and [^...]. */ | ||
| 1943 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | ||
| 1944 | { | ||
| 1945 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | ||
| 1946 | |||
| 1947 | PATFETCH (c1); | ||
| 1948 | SET_LIST_BIT (c1); | ||
| 1949 | continue; | ||
| 1950 | } | ||
| 1951 | |||
| 1952 | /* Could be the end of the bracket expression. If it's | ||
| 1953 | not (i.e., when the bracket expression is `[]' so | ||
| 1954 | far), the ']' character bit gets set way below. */ | ||
| 1955 | if (c == ']' && p != p1 + 1) | ||
| 1956 | break; | ||
| 1957 | |||
| 1958 | /* Look ahead to see if it's a range when the last thing | ||
| 1959 | was a character class. */ | ||
| 1960 | if (had_char_class && c == '-' && *p != ']') | ||
| 1961 | FREE_STACK_RETURN (REG_ERANGE); | ||
| 1962 | |||
| 1963 | /* Look ahead to see if it's a range when the last thing | ||
| 1964 | was a character: if this is a hyphen not at the | ||
| 1965 | beginning or the end of a list, then it's the range | ||
| 1966 | operator. */ | ||
| 1967 | if (c == '-' | ||
| 1968 | && !(p - 2 >= pattern && p[-2] == '[') | ||
| 1969 | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | ||
| 1970 | && *p != ']') | ||
| 1971 | { | ||
| 1972 | reg_errcode_t ret | ||
| 1973 | = compile_range (&p, pend, translate, syntax, b); | ||
| 1974 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | ||
| 1975 | } | ||
| 1976 | |||
| 1977 | else if (p[0] == '-' && p[1] != ']') | ||
| 1978 | { /* This handles ranges made up of characters only. */ | ||
| 1979 | reg_errcode_t ret; | ||
| 1980 | |||
| 1981 | /* Move past the `-'. */ | ||
| 1982 | PATFETCH (c1); | ||
| 1983 | |||
| 1984 | ret = compile_range (&p, pend, translate, syntax, b); | ||
| 1985 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | ||
| 1986 | } | ||
| 1987 | |||
| 1988 | /* See if we're at the beginning of a possible character | ||
| 1989 | class. */ | ||
| 1990 | |||
| 1991 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | ||
| 1992 | { /* Leave room for the null. */ | ||
| 1993 | char str[CHAR_CLASS_MAX_LENGTH + 1]; | ||
| 1994 | |||
| 1995 | PATFETCH (c); | ||
| 1996 | c1 = 0; | ||
| 1997 | |||
| 1998 | /* If pattern is `[[:'. */ | ||
| 1999 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | ||
| 2000 | |||
| 2001 | for (;;) | ||
| 2002 | { | ||
| 2003 | PATFETCH (c); | ||
| 2004 | if (c == ':' || c == ']' || p == pend | ||
| 2005 | || c1 == CHAR_CLASS_MAX_LENGTH) | ||
| 2006 | break; | ||
| 2007 | str[c1++] = c; | ||
| 2008 | } | ||
| 2009 | str[c1] = '\0'; | ||
| 2010 | |||
| 2011 | /* If isn't a word bracketed by `[:' and:`]': | ||
| 2012 | undo the ending character, the letters, and leave | ||
| 2013 | the leading `:' and `[' (but set bits for them). */ | ||
| 2014 | if (c == ':' && *p == ']') | ||
| 2015 | { | ||
| 2016 | int ch; | ||
| 2017 | boolean is_alnum = STREQ (str, "alnum"); | ||
| 2018 | boolean is_alpha = STREQ (str, "alpha"); | ||
| 2019 | boolean is_blank = STREQ (str, "blank"); | ||
| 2020 | boolean is_cntrl = STREQ (str, "cntrl"); | ||
| 2021 | boolean is_digit = STREQ (str, "digit"); | ||
| 2022 | boolean is_graph = STREQ (str, "graph"); | ||
| 2023 | boolean is_lower = STREQ (str, "lower"); | ||
| 2024 | boolean is_print = STREQ (str, "print"); | ||
| 2025 | boolean is_punct = STREQ (str, "punct"); | ||
| 2026 | boolean is_space = STREQ (str, "space"); | ||
| 2027 | boolean is_upper = STREQ (str, "upper"); | ||
| 2028 | boolean is_xdigit = STREQ (str, "xdigit"); | ||
| 2029 | |||
| 2030 | if (!IS_CHAR_CLASS (str)) | ||
| 2031 | FREE_STACK_RETURN (REG_ECTYPE); | ||
| 2032 | |||
| 2033 | /* Throw away the ] at the end of the character | ||
| 2034 | class. */ | ||
| 2035 | PATFETCH (c); | ||
| 2036 | |||
| 2037 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | ||
| 2038 | |||
| 2039 | for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | ||
| 2040 | { | ||
| 2041 | /* This was split into 3 if's to | ||
| 2042 | avoid an arbitrary limit in some compiler. */ | ||
| 2043 | if ( (is_alnum && ISALNUM (ch)) | ||
| 2044 | || (is_alpha && ISALPHA (ch)) | ||
| 2045 | || (is_blank && ISBLANK (ch)) | ||
| 2046 | || (is_cntrl && ISCNTRL (ch))) | ||
| 2047 | SET_LIST_BIT (ch); | ||
| 2048 | if ( (is_digit && ISDIGIT (ch)) | ||
| 2049 | || (is_graph && ISGRAPH (ch)) | ||
| 2050 | || (is_lower && ISLOWER (ch)) | ||
| 2051 | || (is_print && ISPRINT (ch))) | ||
| 2052 | SET_LIST_BIT (ch); | ||
| 2053 | if ( (is_punct && ISPUNCT (ch)) | ||
| 2054 | || (is_space && ISSPACE (ch)) | ||
| 2055 | || (is_upper && ISUPPER (ch)) | ||
| 2056 | || (is_xdigit && ISXDIGIT (ch))) | ||
| 2057 | SET_LIST_BIT (ch); | ||
| 2058 | } | ||
| 2059 | had_char_class = true; | ||
| 2060 | } | ||
| 2061 | else | ||
| 2062 | { | ||
| 2063 | c1++; | ||
| 2064 | while (c1--) | ||
| 2065 | PATUNFETCH; | ||
| 2066 | SET_LIST_BIT ('['); | ||
| 2067 | SET_LIST_BIT (':'); | ||
| 2068 | had_char_class = false; | ||
| 2069 | } | ||
| 2070 | } | ||
| 2071 | else | ||
| 2072 | { | ||
| 2073 | had_char_class = false; | ||
| 2074 | SET_LIST_BIT (c); | ||
| 2075 | } | ||
| 2076 | } | ||
| 2077 | |||
| 2078 | /* Discard any (non)matching list bytes that are all 0 at the | ||
| 2079 | end of the map. Decrease the map-length byte too. */ | ||
| 2080 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | ||
| 2081 | b[-1]--; | ||
| 2082 | b += b[-1]; | ||
| 2083 | } | ||
| 2084 | break; | ||
| 2085 | |||
| 2086 | |||
| 2087 | case '(': | ||
| 2088 | if (syntax & RE_NO_BK_PARENS) | ||
| 2089 | goto handle_open; | ||
| 2090 | else | ||
| 2091 | goto normal_char; | ||
| 2092 | |||
| 2093 | |||
| 2094 | case ')': | ||
| 2095 | if (syntax & RE_NO_BK_PARENS) | ||
| 2096 | goto handle_close; | ||
| 2097 | else | ||
| 2098 | goto normal_char; | ||
| 2099 | |||
| 2100 | |||
| 2101 | case '\n': | ||
| 2102 | if (syntax & RE_NEWLINE_ALT) | ||
| 2103 | goto handle_alt; | ||
| 2104 | else | ||
| 2105 | goto normal_char; | ||
| 2106 | |||
| 2107 | |||
| 2108 | case '|': | ||
| 2109 | if (syntax & RE_NO_BK_VBAR) | ||
| 2110 | goto handle_alt; | ||
| 2111 | else | ||
| 2112 | goto normal_char; | ||
| 2113 | |||
| 2114 | |||
| 2115 | case '{': | ||
| 2116 | if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | ||
| 2117 | goto handle_interval; | ||
| 2118 | else | ||
| 2119 | goto normal_char; | ||
| 2120 | |||
| 2121 | |||
| 2122 | case '\\': | ||
| 2123 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | ||
| 2124 | |||
| 2125 | /* Do not translate the character after the \, so that we can | ||
| 2126 | distinguish, e.g., \B from \b, even if we normally would | ||
| 2127 | translate, e.g., B to b. */ | ||
| 2128 | PATFETCH_RAW (c); | ||
| 2129 | |||
| 2130 | switch (c) | ||
| 2131 | { | ||
| 2132 | case '(': | ||
| 2133 | if (syntax & RE_NO_BK_PARENS) | ||
| 2134 | goto normal_backslash; | ||
| 2135 | |||
| 2136 | handle_open: | ||
| 2137 | bufp->re_nsub++; | ||
| 2138 | regnum++; | ||
| 2139 | |||
| 2140 | if (COMPILE_STACK_FULL) | ||
| 2141 | { | ||
| 2142 | RETALLOC (compile_stack.stack, compile_stack.size << 1, | ||
| 2143 | compile_stack_elt_t); | ||
| 2144 | if (compile_stack.stack == NULL) return REG_ESPACE; | ||
| 2145 | |||
| 2146 | compile_stack.size <<= 1; | ||
| 2147 | } | ||
| 2148 | |||
| 2149 | /* These are the values to restore when we hit end of this | ||
| 2150 | group. They are all relative offsets, so that if the | ||
| 2151 | whole pattern moves because of realloc, they will still | ||
| 2152 | be valid. */ | ||
| 2153 | COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | ||
| 2154 | COMPILE_STACK_TOP.fixup_alt_jump | ||
| 2155 | = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | ||
| 2156 | COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; | ||
| 2157 | COMPILE_STACK_TOP.regnum = regnum; | ||
| 2158 | |||
| 2159 | /* We will eventually replace the 0 with the number of | ||
| 2160 | groups inner to this one. But do not push a | ||
| 2161 | start_memory for groups beyond the last one we can | ||
| 2162 | represent in the compiled pattern. */ | ||
| 2163 | if (regnum <= MAX_REGNUM) | ||
| 2164 | { | ||
| 2165 | COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; | ||
| 2166 | BUF_PUSH_3 (start_memory, regnum, 0); | ||
| 2167 | } | ||
| 2168 | |||
| 2169 | compile_stack.avail++; | ||
| 2170 | |||
| 2171 | fixup_alt_jump = 0; | ||
| 2172 | laststart = 0; | ||
| 2173 | begalt = b; | ||
| 2174 | /* If we've reached MAX_REGNUM groups, then this open | ||
| 2175 | won't actually generate any code, so we'll have to | ||
| 2176 | clear pending_exact explicitly. */ | ||
| 2177 | pending_exact = 0; | ||
| 2178 | break; | ||
| 2179 | |||
| 2180 | |||
| 2181 | case ')': | ||
| 2182 | if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | ||
| 2183 | |||
| 2184 | if (COMPILE_STACK_EMPTY) | ||
| 2185 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
| 2186 | goto normal_backslash; | ||
| 2187 | else | ||
| 2188 | FREE_STACK_RETURN (REG_ERPAREN); | ||
| 2189 | |||
| 2190 | handle_close: | ||
| 2191 | if (fixup_alt_jump) | ||
| 2192 | { /* Push a dummy failure point at the end of the | ||
| 2193 | alternative for a possible future | ||
| 2194 | `pop_failure_jump' to pop. See comments at | ||
| 2195 | `push_dummy_failure' in `re_match_2'. */ | ||
| 2196 | BUF_PUSH (push_dummy_failure); | ||
| 2197 | |||
| 2198 | /* We allocated space for this jump when we assigned | ||
| 2199 | to `fixup_alt_jump', in the `handle_alt' case below. */ | ||
| 2200 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); | ||
| 2201 | } | ||
| 2202 | |||
| 2203 | /* See similar code for backslashed left paren above. */ | ||
| 2204 | if (COMPILE_STACK_EMPTY) | ||
| 2205 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
| 2206 | goto normal_char; | ||
| 2207 | else | ||
| 2208 | FREE_STACK_RETURN (REG_ERPAREN); | ||
| 2209 | |||
| 2210 | /* Since we just checked for an empty stack above, this | ||
| 2211 | ``can't happen''. */ | ||
| 2212 | assert (compile_stack.avail != 0); | ||
| 2213 | { | ||
| 2214 | /* We don't just want to restore into `regnum', because | ||
| 2215 | later groups should continue to be numbered higher, | ||
| 2216 | as in `(ab)c(de)' -- the second group is #2. */ | ||
| 2217 | regnum_t this_group_regnum; | ||
| 2218 | |||
| 2219 | compile_stack.avail--; | ||
| 2220 | begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | ||
| 2221 | fixup_alt_jump | ||
| 2222 | = COMPILE_STACK_TOP.fixup_alt_jump | ||
| 2223 | ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | ||
| 2224 | : 0; | ||
| 2225 | laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | ||
| 2226 | this_group_regnum = COMPILE_STACK_TOP.regnum; | ||
| 2227 | /* If we've reached MAX_REGNUM groups, then this open | ||
| 2228 | won't actually generate any code, so we'll have to | ||
| 2229 | clear pending_exact explicitly. */ | ||
| 2230 | pending_exact = 0; | ||
| 2231 | |||
| 2232 | /* We're at the end of the group, so now we know how many | ||
| 2233 | groups were inside this one. */ | ||
| 2234 | if (this_group_regnum <= MAX_REGNUM) | ||
| 2235 | { | ||
| 2236 | unsigned char *inner_group_loc | ||
| 2237 | = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | ||
| 2238 | |||
| 2239 | *inner_group_loc = regnum - this_group_regnum; | ||
| 2240 | BUF_PUSH_3 (stop_memory, this_group_regnum, | ||
| 2241 | regnum - this_group_regnum); | ||
| 2242 | } | ||
| 2243 | } | ||
| 2244 | break; | ||
| 2245 | |||
| 2246 | |||
| 2247 | case '|': /* `\|'. */ | ||
| 2248 | if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | ||
| 2249 | goto normal_backslash; | ||
| 2250 | handle_alt: | ||
| 2251 | if (syntax & RE_LIMITED_OPS) | ||
| 2252 | goto normal_char; | ||
| 2253 | |||
| 2254 | /* Insert before the previous alternative a jump which | ||
| 2255 | jumps to this alternative if the former fails. */ | ||
| 2256 | GET_BUFFER_SPACE (3); | ||
| 2257 | INSERT_JUMP (on_failure_jump, begalt, b + 6); | ||
| 2258 | pending_exact = 0; | ||
| 2259 | b += 3; | ||
| 2260 | |||
| 2261 | /* The alternative before this one has a jump after it | ||
| 2262 | which gets executed if it gets matched. Adjust that | ||
| 2263 | jump so it will jump to this alternative's analogous | ||
| 2264 | jump (put in below, which in turn will jump to the next | ||
| 2265 | (if any) alternative's such jump, etc.). The last such | ||
| 2266 | jump jumps to the correct final destination. A picture: | ||
| 2267 | _____ _____ | ||
| 2268 | | | | | | ||
| 2269 | | v | v | ||
| 2270 | a | b | c | ||
| 2271 | |||
| 2272 | If we are at `b', then fixup_alt_jump right now points to a | ||
| 2273 | three-byte space after `a'. We'll put in the jump, set | ||
| 2274 | fixup_alt_jump to right after `b', and leave behind three | ||
| 2275 | bytes which we'll fill in when we get to after `c'. */ | ||
| 2276 | |||
| 2277 | if (fixup_alt_jump) | ||
| 2278 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | ||
| 2279 | |||
| 2280 | /* Mark and leave space for a jump after this alternative, | ||
| 2281 | to be filled in later either by next alternative or | ||
| 2282 | when know we're at the end of a series of alternatives. */ | ||
| 2283 | fixup_alt_jump = b; | ||
| 2284 | GET_BUFFER_SPACE (3); | ||
| 2285 | b += 3; | ||
| 2286 | |||
| 2287 | laststart = 0; | ||
| 2288 | begalt = b; | ||
| 2289 | break; | ||
| 2290 | |||
| 2291 | |||
| 2292 | case '{': | ||
| 2293 | /* If \{ is a literal. */ | ||
| 2294 | if (!(syntax & RE_INTERVALS) | ||
| 2295 | /* If we're at `\{' and it's not the open-interval | ||
| 2296 | operator. */ | ||
| 2297 | || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | ||
| 2298 | || (p - 2 == pattern && p == pend)) | ||
| 2299 | goto normal_backslash; | ||
| 2300 | |||
| 2301 | handle_interval: | ||
| 2302 | { | ||
| 2303 | /* If got here, then the syntax allows intervals. */ | ||
| 2304 | |||
| 2305 | /* At least (most) this many matches must be made. */ | ||
| 2306 | int lower_bound = -1, upper_bound = -1; | ||
| 2307 | |||
| 2308 | beg_interval = p - 1; | ||
| 2309 | |||
| 2310 | if (p == pend) | ||
| 2311 | { | ||
| 2312 | if (syntax & RE_NO_BK_BRACES) | ||
| 2313 | goto unfetch_interval; | ||
| 2314 | else | ||
| 2315 | FREE_STACK_RETURN (REG_EBRACE); | ||
| 2316 | } | ||
| 2317 | |||
| 2318 | GET_UNSIGNED_NUMBER (lower_bound); | ||
| 2319 | |||
| 2320 | if (c == ',') | ||
| 2321 | { | ||
| 2322 | GET_UNSIGNED_NUMBER (upper_bound); | ||
| 2323 | if (upper_bound < 0) upper_bound = RE_DUP_MAX; | ||
| 2324 | } | ||
| 2325 | else | ||
| 2326 | /* Interval such as `{1}' => match exactly once. */ | ||
| 2327 | upper_bound = lower_bound; | ||
| 2328 | |||
| 2329 | if (lower_bound < 0 || upper_bound > RE_DUP_MAX | ||
| 2330 | || lower_bound > upper_bound) | ||
| 2331 | { | ||
| 2332 | if (syntax & RE_NO_BK_BRACES) | ||
| 2333 | goto unfetch_interval; | ||
| 2334 | else | ||
| 2335 | FREE_STACK_RETURN (REG_BADBR); | ||
| 2336 | } | ||
| 2337 | |||
| 2338 | if (!(syntax & RE_NO_BK_BRACES)) | ||
| 2339 | { | ||
| 2340 | if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); | ||
| 2341 | |||
| 2342 | PATFETCH (c); | ||
| 2343 | } | ||
| 2344 | |||
| 2345 | if (c != '}') | ||
| 2346 | { | ||
| 2347 | if (syntax & RE_NO_BK_BRACES) | ||
| 2348 | goto unfetch_interval; | ||
| 2349 | else | ||
| 2350 | FREE_STACK_RETURN (REG_BADBR); | ||
| 2351 | } | ||
| 2352 | |||
| 2353 | /* We just parsed a valid interval. */ | ||
| 2354 | |||
| 2355 | /* If it's invalid to have no preceding re. */ | ||
| 2356 | if (!laststart) | ||
| 2357 | { | ||
| 2358 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
| 2359 | FREE_STACK_RETURN (REG_BADRPT); | ||
| 2360 | else if (syntax & RE_CONTEXT_INDEP_OPS) | ||
| 2361 | laststart = b; | ||
| 2362 | else | ||
| 2363 | goto unfetch_interval; | ||
| 2364 | } | ||
| 2365 | |||
| 2366 | /* If the upper bound is zero, don't want to succeed at | ||
| 2367 | all; jump from `laststart' to `b + 3', which will be | ||
| 2368 | the end of the buffer after we insert the jump. */ | ||
| 2369 | if (upper_bound == 0) | ||
| 2370 | { | ||
| 2371 | GET_BUFFER_SPACE (3); | ||
| 2372 | INSERT_JUMP (jump, laststart, b + 3); | ||
| 2373 | b += 3; | ||
| 2374 | } | ||
| 2375 | |||
| 2376 | /* Otherwise, we have a nontrivial interval. When | ||
| 2377 | we're all done, the pattern will look like: | ||
| 2378 | set_number_at <jump count> <upper bound> | ||
| 2379 | set_number_at <succeed_n count> <lower bound> | ||
| 2380 | succeed_n <after jump addr> <succeed_n count> | ||
| 2381 | <body of loop> | ||
| 2382 | jump_n <succeed_n addr> <jump count> | ||
| 2383 | (The upper bound and `jump_n' are omitted if | ||
| 2384 | `upper_bound' is 1, though.) */ | ||
| 2385 | else | ||
| 2386 | { /* If the upper bound is > 1, we need to insert | ||
| 2387 | more at the end of the loop. */ | ||
| 2388 | unsigned nbytes = 10 + (upper_bound > 1) * 10; | ||
| 2389 | |||
| 2390 | GET_BUFFER_SPACE (nbytes); | ||
| 2391 | |||
| 2392 | /* Initialize lower bound of the `succeed_n', even | ||
| 2393 | though it will be set during matching by its | ||
| 2394 | attendant `set_number_at' (inserted next), | ||
| 2395 | because `re_compile_fastmap' needs to know. | ||
| 2396 | Jump to the `jump_n' we might insert below. */ | ||
| 2397 | INSERT_JUMP2 (succeed_n, laststart, | ||
| 2398 | b + 5 + (upper_bound > 1) * 5, | ||
| 2399 | lower_bound); | ||
| 2400 | b += 5; | ||
| 2401 | |||
| 2402 | /* Code to initialize the lower bound. Insert | ||
| 2403 | before the `succeed_n'. The `5' is the last two | ||
| 2404 | bytes of this `set_number_at', plus 3 bytes of | ||
| 2405 | the following `succeed_n'. */ | ||
| 2406 | insert_op2 (set_number_at, laststart, 5, lower_bound, b); | ||
| 2407 | b += 5; | ||
| 2408 | |||
| 2409 | if (upper_bound > 1) | ||
| 2410 | { /* More than one repetition is allowed, so | ||
| 2411 | append a backward jump to the `succeed_n' | ||
| 2412 | that starts this interval. | ||
| 2413 | |||
| 2414 | When we've reached this during matching, | ||
| 2415 | we'll have matched the interval once, so | ||
| 2416 | jump back only `upper_bound - 1' times. */ | ||
| 2417 | STORE_JUMP2 (jump_n, b, laststart + 5, | ||
| 2418 | upper_bound - 1); | ||
| 2419 | b += 5; | ||
| 2420 | |||
| 2421 | /* The location we want to set is the second | ||
| 2422 | parameter of the `jump_n'; that is `b-2' as | ||
| 2423 | an absolute address. `laststart' will be | ||
| 2424 | the `set_number_at' we're about to insert; | ||
| 2425 | `laststart+3' the number to set, the source | ||
| 2426 | for the relative address. But we are | ||
| 2427 | inserting into the middle of the pattern -- | ||
| 2428 | so everything is getting moved up by 5. | ||
| 2429 | Conclusion: (b - 2) - (laststart + 3) + 5, | ||
| 2430 | i.e., b - laststart. | ||
| 2431 | |||
| 2432 | We insert this at the beginning of the loop | ||
| 2433 | so that if we fail during matching, we'll | ||
| 2434 | reinitialize the bounds. */ | ||
| 2435 | insert_op2 (set_number_at, laststart, b - laststart, | ||
| 2436 | upper_bound - 1, b); | ||
| 2437 | b += 5; | ||
| 2438 | } | ||
| 2439 | } | ||
| 2440 | pending_exact = 0; | ||
| 2441 | beg_interval = NULL; | ||
| 2442 | } | ||
| 2443 | break; | ||
| 2444 | |||
| 2445 | unfetch_interval: | ||
| 2446 | /* If an invalid interval, match the characters as literals. */ | ||
| 2447 | assert (beg_interval); | ||
| 2448 | p = beg_interval; | ||
| 2449 | beg_interval = NULL; | ||
| 2450 | |||
| 2451 | /* normal_char and normal_backslash need `c'. */ | ||
| 2452 | PATFETCH (c); | ||
| 2453 | |||
| 2454 | if (!(syntax & RE_NO_BK_BRACES)) | ||
| 2455 | { | ||
| 2456 | if (p > pattern && p[-1] == '\\') | ||
| 2457 | goto normal_backslash; | ||
| 2458 | } | ||
| 2459 | goto normal_char; | ||
| 2460 | |||
| 2461 | #ifdef emacs | ||
| 2462 | /* There is no way to specify the before_dot and after_dot | ||
| 2463 | operators. rms says this is ok. --karl */ | ||
| 2464 | case '=': | ||
| 2465 | BUF_PUSH (at_dot); | ||
| 2466 | break; | ||
| 2467 | |||
| 2468 | case 's': | ||
| 2469 | laststart = b; | ||
| 2470 | PATFETCH (c); | ||
| 2471 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | ||
| 2472 | break; | ||
| 2473 | |||
| 2474 | case 'S': | ||
| 2475 | laststart = b; | ||
| 2476 | PATFETCH (c); | ||
| 2477 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | ||
| 2478 | break; | ||
| 2479 | #endif /* emacs */ | ||
| 2480 | |||
| 2481 | |||
| 2482 | case 'w': | ||
| 2483 | laststart = b; | ||
| 2484 | BUF_PUSH (wordchar); | ||
| 2485 | break; | ||
| 2486 | |||
| 2487 | |||
| 2488 | case 'W': | ||
| 2489 | laststart = b; | ||
| 2490 | BUF_PUSH (notwordchar); | ||
| 2491 | break; | ||
| 2492 | |||
| 2493 | |||
| 2494 | case '<': | ||
| 2495 | BUF_PUSH (wordbeg); | ||
| 2496 | break; | ||
| 2497 | |||
| 2498 | case '>': | ||
| 2499 | BUF_PUSH (wordend); | ||
| 2500 | break; | ||
| 2501 | |||
| 2502 | case 'b': | ||
| 2503 | BUF_PUSH (wordbound); | ||
| 2504 | break; | ||
| 2505 | |||
| 2506 | case 'B': | ||
| 2507 | BUF_PUSH (notwordbound); | ||
| 2508 | break; | ||
| 2509 | |||
| 2510 | case '`': | ||
| 2511 | BUF_PUSH (begbuf); | ||
| 2512 | break; | ||
| 2513 | |||
| 2514 | case '\'': | ||
| 2515 | BUF_PUSH (endbuf); | ||
| 2516 | break; | ||
| 2517 | |||
| 2518 | case '1': case '2': case '3': case '4': case '5': | ||
| 2519 | case '6': case '7': case '8': case '9': | ||
| 2520 | if (syntax & RE_NO_BK_REFS) | ||
| 2521 | goto normal_char; | ||
| 2522 | |||
| 2523 | c1 = c - '0'; | ||
| 2524 | |||
| 2525 | if (c1 > regnum) | ||
| 2526 | FREE_STACK_RETURN (REG_ESUBREG); | ||
| 2527 | |||
| 2528 | /* Can't back reference to a subexpression if inside of it. */ | ||
| 2529 | if (group_in_compile_stack (compile_stack, c1)) | ||
| 2530 | goto normal_char; | ||
| 2531 | |||
| 2532 | laststart = b; | ||
| 2533 | BUF_PUSH_2 (duplicate, c1); | ||
| 2534 | break; | ||
| 2535 | |||
| 2536 | |||
| 2537 | case '+': | ||
| 2538 | case '?': | ||
| 2539 | if (syntax & RE_BK_PLUS_QM) | ||
| 2540 | goto handle_plus; | ||
| 2541 | else | ||
| 2542 | goto normal_backslash; | ||
| 2543 | |||
| 2544 | default: | ||
| 2545 | normal_backslash: | ||
| 2546 | /* You might think it would be useful for \ to mean | ||
| 2547 | not to translate; but if we don't translate it | ||
| 2548 | it will never match anything. */ | ||
| 2549 | c = TRANSLATE (c); | ||
| 2550 | goto normal_char; | ||
| 2551 | } | ||
| 2552 | break; | ||
| 2553 | |||
| 2554 | |||
| 2555 | default: | ||
| 2556 | /* Expects the character in `c'. */ | ||
| 2557 | normal_char: | ||
| 2558 | /* If no exactn currently being built. */ | ||
| 2559 | if (!pending_exact | ||
| 2560 | |||
| 2561 | /* If last exactn not at current position. */ | ||
| 2562 | || pending_exact + *pending_exact + 1 != b | ||
| 2563 | |||
| 2564 | /* We have only one byte following the exactn for the count. */ | ||
| 2565 | || *pending_exact == (1 << BYTEWIDTH) - 1 | ||
| 2566 | |||
| 2567 | /* If followed by a repetition operator. */ | ||
| 2568 | || *p == '*' || *p == '^' | ||
| 2569 | || ((syntax & RE_BK_PLUS_QM) | ||
| 2570 | ? *p == '\\' && (p[1] == '+' || p[1] == '?') | ||
| 2571 | : (*p == '+' || *p == '?')) | ||
| 2572 | || ((syntax & RE_INTERVALS) | ||
| 2573 | && ((syntax & RE_NO_BK_BRACES) | ||
| 2574 | ? *p == '{' | ||
| 2575 | : (p[0] == '\\' && p[1] == '{')))) | ||
| 2576 | { | ||
| 2577 | /* Start building a new exactn. */ | ||
| 2578 | |||
| 2579 | laststart = b; | ||
| 2580 | |||
| 2581 | BUF_PUSH_2 (exactn, 0); | ||
| 2582 | pending_exact = b - 1; | ||
| 2583 | } | ||
| 2584 | |||
| 2585 | BUF_PUSH (c); | ||
| 2586 | (*pending_exact)++; | ||
| 2587 | break; | ||
| 2588 | } /* switch (c) */ | ||
| 2589 | } /* while p != pend */ | ||
| 2590 | |||
| 2591 | |||
| 2592 | /* Through the pattern now. */ | ||
| 2593 | |||
| 2594 | if (fixup_alt_jump) | ||
| 2595 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | ||
| 2596 | |||
| 2597 | if (!COMPILE_STACK_EMPTY) | ||
| 2598 | FREE_STACK_RETURN (REG_EPAREN); | ||
| 2599 | |||
| 2600 | /* If we don't want backtracking, force success | ||
| 2601 | the first time we reach the end of the compiled pattern. */ | ||
| 2602 | if (syntax & RE_NO_POSIX_BACKTRACKING) | ||
| 2603 | BUF_PUSH (succeed); | ||
| 2604 | |||
| 2605 | free (compile_stack.stack); | ||
| 2606 | |||
| 2607 | /* We have succeeded; set the length of the buffer. */ | ||
| 2608 | bufp->used = b - bufp->buffer; | ||
| 2609 | |||
| 2610 | #ifdef DEBUG | ||
| 2611 | if (debug) | ||
| 2612 | { | ||
| 2613 | DEBUG_PRINT1 ("\nCompiled pattern: \n"); | ||
| 2614 | print_compiled_pattern (bufp); | ||
| 2615 | } | ||
| 2616 | #endif /* DEBUG */ | ||
| 2617 | |||
| 2618 | #ifndef MATCH_MAY_ALLOCATE | ||
| 2619 | /* Initialize the failure stack to the largest possible stack. This | ||
| 2620 | isn't necessary unless we're trying to avoid calling alloca in | ||
| 2621 | the search and match routines. */ | ||
| 2622 | { | ||
| 2623 | int num_regs = bufp->re_nsub + 1; | ||
| 2624 | |||
| 2625 | /* Since DOUBLE_FAIL_STACK refuses to double only if the current size | ||
| 2626 | is strictly greater than re_max_failures, the largest possible stack | ||
| 2627 | is 2 * re_max_failures failure points. */ | ||
| 2628 | if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) | ||
| 2629 | { | ||
| 2630 | fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); | ||
| 2631 | |||
| 2632 | #ifdef emacs | ||
| 2633 | if (! fail_stack.stack) | ||
| 2634 | fail_stack.stack | ||
| 2635 | = (fail_stack_elt_t *) xmalloc (fail_stack.size | ||
| 2636 | * sizeof (fail_stack_elt_t)); | ||
| 2637 | else | ||
| 2638 | fail_stack.stack | ||
| 2639 | = (fail_stack_elt_t *) xrealloc (fail_stack.stack, | ||
| 2640 | (fail_stack.size | ||
| 2641 | * sizeof (fail_stack_elt_t))); | ||
| 2642 | #else /* not emacs */ | ||
| 2643 | if (! fail_stack.stack) | ||
| 2644 | fail_stack.stack | ||
| 2645 | = (fail_stack_elt_t *) malloc (fail_stack.size | ||
| 2646 | * sizeof (fail_stack_elt_t)); | ||
| 2647 | else | ||
| 2648 | fail_stack.stack | ||
| 2649 | = (fail_stack_elt_t *) realloc (fail_stack.stack, | ||
| 2650 | (fail_stack.size | ||
| 2651 | * sizeof (fail_stack_elt_t))); | ||
| 2652 | #endif /* not emacs */ | ||
| 2653 | } | ||
| 2654 | |||
| 2655 | regex_grow_registers (num_regs); | ||
| 2656 | } | ||
| 2657 | #endif /* not MATCH_MAY_ALLOCATE */ | ||
| 2658 | |||
| 2659 | return REG_NOERROR; | ||
| 2660 | } /* regex_compile */ | ||
| 2661 | |||
| 2662 | /* Subroutines for `regex_compile'. */ | ||
| 2663 | |||
| 2664 | /* Store OP at LOC followed by two-byte integer parameter ARG. */ | ||
| 2665 | |||
| 2666 | static void | ||
| 2667 | store_op1 (op, loc, arg) | ||
| 2668 | re_opcode_t op; | ||
| 2669 | unsigned char *loc; | ||
| 2670 | int arg; | ||
| 2671 | { | ||
| 2672 | *loc = (unsigned char) op; | ||
| 2673 | STORE_NUMBER (loc + 1, arg); | ||
| 2674 | } | ||
| 2675 | |||
| 2676 | |||
| 2677 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | ||
| 2678 | |||
| 2679 | static void | ||
| 2680 | store_op2 (op, loc, arg1, arg2) | ||
| 2681 | re_opcode_t op; | ||
| 2682 | unsigned char *loc; | ||
| 2683 | int arg1, arg2; | ||
| 2684 | { | ||
| 2685 | *loc = (unsigned char) op; | ||
| 2686 | STORE_NUMBER (loc + 1, arg1); | ||
| 2687 | STORE_NUMBER (loc + 3, arg2); | ||
| 2688 | } | ||
| 2689 | |||
| 2690 | |||
| 2691 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC | ||
| 2692 | for OP followed by two-byte integer parameter ARG. */ | ||
| 2693 | |||
| 2694 | static void | ||
| 2695 | insert_op1 (op, loc, arg, end) | ||
| 2696 | re_opcode_t op; | ||
| 2697 | unsigned char *loc; | ||
| 2698 | int arg; | ||
| 2699 | unsigned char *end; | ||
| 2700 | { | ||
| 2701 | register unsigned char *pfrom = end; | ||
| 2702 | register unsigned char *pto = end + 3; | ||
| 2703 | |||
| 2704 | while (pfrom != loc) | ||
| 2705 | *--pto = *--pfrom; | ||
| 2706 | |||
| 2707 | store_op1 (op, loc, arg); | ||
| 2708 | } | ||
| 2709 | |||
| 2710 | |||
| 2711 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | ||
| 2712 | |||
| 2713 | static void | ||
| 2714 | insert_op2 (op, loc, arg1, arg2, end) | ||
| 2715 | re_opcode_t op; | ||
| 2716 | unsigned char *loc; | ||
| 2717 | int arg1, arg2; | ||
| 2718 | unsigned char *end; | ||
| 2719 | { | ||
| 2720 | register unsigned char *pfrom = end; | ||
| 2721 | register unsigned char *pto = end + 5; | ||
| 2722 | |||
| 2723 | while (pfrom != loc) | ||
| 2724 | *--pto = *--pfrom; | ||
| 2725 | |||
| 2726 | store_op2 (op, loc, arg1, arg2); | ||
| 2727 | } | ||
| 2728 | |||
| 2729 | |||
| 2730 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes | ||
| 2731 | after an alternative or a begin-subexpression. We assume there is at | ||
| 2732 | least one character before the ^. */ | ||
| 2733 | |||
| 2734 | static boolean | ||
| 2735 | at_begline_loc_p (pattern, p, syntax) | ||
| 2736 | const char *pattern, *p; | ||
| 2737 | reg_syntax_t syntax; | ||
| 2738 | { | ||
| 2739 | const char *prev = p - 2; | ||
| 2740 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | ||
| 2741 | |||
| 2742 | return | ||
| 2743 | /* After a subexpression? */ | ||
| 2744 | (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | ||
| 2745 | /* After an alternative? */ | ||
| 2746 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | ||
| 2747 | } | ||
| 2748 | |||
| 2749 | |||
| 2750 | /* The dual of at_begline_loc_p. This one is for $. We assume there is | ||
| 2751 | at least one character after the $, i.e., `P < PEND'. */ | ||
| 2752 | |||
| 2753 | static boolean | ||
| 2754 | at_endline_loc_p (p, pend, syntax) | ||
| 2755 | const char *p, *pend; | ||
| 2756 | int syntax; | ||
| 2757 | { | ||
| 2758 | const char *next = p; | ||
| 2759 | boolean next_backslash = *next == '\\'; | ||
| 2760 | const char *next_next = p + 1 < pend ? p + 1 : NULL; | ||
| 2761 | |||
| 2762 | return | ||
| 2763 | /* Before a subexpression? */ | ||
| 2764 | (syntax & RE_NO_BK_PARENS ? *next == ')' | ||
| 2765 | : next_backslash && next_next && *next_next == ')') | ||
| 2766 | /* Before an alternative? */ | ||
| 2767 | || (syntax & RE_NO_BK_VBAR ? *next == '|' | ||
| 2768 | : next_backslash && next_next && *next_next == '|'); | ||
| 2769 | } | ||
| 2770 | |||
| 2771 | |||
| 2772 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | ||
| 2773 | false if it's not. */ | ||
| 2774 | |||
| 2775 | static boolean | ||
| 2776 | group_in_compile_stack (compile_stack, regnum) | ||
| 2777 | compile_stack_type compile_stack; | ||
| 2778 | regnum_t regnum; | ||
| 2779 | { | ||
| 2780 | int this_element; | ||
| 2781 | |||
| 2782 | for (this_element = compile_stack.avail - 1; | ||
| 2783 | this_element >= 0; | ||
| 2784 | this_element--) | ||
| 2785 | if (compile_stack.stack[this_element].regnum == regnum) | ||
| 2786 | return true; | ||
| 2787 | |||
| 2788 | return false; | ||
| 2789 | } | ||
| 2790 | |||
| 2791 | |||
| 2792 | /* Read the ending character of a range (in a bracket expression) from the | ||
| 2793 | uncompiled pattern *P_PTR (which ends at PEND). We assume the | ||
| 2794 | starting character is in `P[-2]'. (`P[-1]' is the character `-'.) | ||
| 2795 | Then we set the translation of all bits between the starting and | ||
| 2796 | ending characters (inclusive) in the compiled pattern B. | ||
| 2797 | |||
| 2798 | Return an error code. | ||
| 2799 | |||
| 2800 | We use these short variable names so we can use the same macros as | ||
| 2801 | `regex_compile' itself. */ | ||
| 2802 | |||
| 2803 | static reg_errcode_t | ||
| 2804 | compile_range (p_ptr, pend, translate, syntax, b) | ||
| 2805 | const char **p_ptr, *pend; | ||
| 2806 | char *translate; | ||
| 2807 | reg_syntax_t syntax; | ||
| 2808 | unsigned char *b; | ||
| 2809 | { | ||
| 2810 | unsigned this_char; | ||
| 2811 | |||
| 2812 | const char *p = *p_ptr; | ||
| 2813 | int range_start, range_end; | ||
| 2814 | |||
| 2815 | if (p == pend) | ||
| 2816 | return REG_ERANGE; | ||
| 2817 | |||
| 2818 | /* Even though the pattern is a signed `char *', we need to fetch | ||
| 2819 | with unsigned char *'s; if the high bit of the pattern character | ||
| 2820 | is set, the range endpoints will be negative if we fetch using a | ||
| 2821 | signed char *. | ||
| 2822 | |||
| 2823 | We also want to fetch the endpoints without translating them; the | ||
| 2824 | appropriate translation is done in the bit-setting loop below. */ | ||
| 2825 | /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */ | ||
| 2826 | range_start = ((const unsigned char *) p)[-2]; | ||
| 2827 | range_end = ((const unsigned char *) p)[0]; | ||
| 2828 | |||
| 2829 | /* Have to increment the pointer into the pattern string, so the | ||
| 2830 | caller isn't still at the ending character. */ | ||
| 2831 | (*p_ptr)++; | ||
| 2832 | |||
| 2833 | /* If the start is after the end, the range is empty. */ | ||
| 2834 | if (range_start > range_end) | ||
| 2835 | return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | ||
| 2836 | |||
| 2837 | /* Here we see why `this_char' has to be larger than an `unsigned | ||
| 2838 | char' -- the range is inclusive, so if `range_end' == 0xff | ||
| 2839 | (assuming 8-bit characters), we would otherwise go into an infinite | ||
| 2840 | loop, since all characters <= 0xff. */ | ||
| 2841 | for (this_char = range_start; this_char <= range_end; this_char++) | ||
| 2842 | { | ||
| 2843 | SET_LIST_BIT (TRANSLATE (this_char)); | ||
| 2844 | } | ||
| 2845 | |||
| 2846 | return REG_NOERROR; | ||
| 2847 | } | ||
| 2848 | |||
| 2849 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | ||
| 2850 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | ||
| 2851 | characters can start a string that matches the pattern. This fastmap | ||
| 2852 | is used by re_search to skip quickly over impossible starting points. | ||
| 2853 | |||
| 2854 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data | ||
| 2855 | area as BUFP->fastmap. | ||
| 2856 | |||
| 2857 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | ||
| 2858 | the pattern buffer. | ||
| 2859 | |||
| 2860 | Returns 0 if we succeed, -2 if an internal error. */ | ||
| 2861 | |||
| 2862 | int | ||
| 2863 | re_compile_fastmap (bufp) | ||
| 2864 | struct re_pattern_buffer *bufp; | ||
| 2865 | { | ||
| 2866 | int j, k; | ||
| 2867 | #ifdef MATCH_MAY_ALLOCATE | ||
| 2868 | fail_stack_type fail_stack; | ||
| 2869 | #endif | ||
| 2870 | #ifndef REGEX_MALLOC | ||
| 2871 | char *destination; | ||
| 2872 | #endif | ||
| 2873 | /* We don't push any register information onto the failure stack. */ | ||
| 2874 | unsigned num_regs = 0; | ||
| 2875 | |||
| 2876 | register char *fastmap = bufp->fastmap; | ||
| 2877 | unsigned char *pattern = bufp->buffer; | ||
| 2878 | unsigned long size = bufp->used; | ||
| 2879 | unsigned char *p = pattern; | ||
| 2880 | register unsigned char *pend = pattern + size; | ||
| 2881 | |||
| 2882 | /* This holds the pointer to the failure stack, when | ||
| 2883 | it is allocated relocatably. */ | ||
| 2884 | fail_stack_elt_t *failure_stack_ptr; | ||
| 2885 | |||
| 2886 | /* Assume that each path through the pattern can be null until | ||
| 2887 | proven otherwise. We set this false at the bottom of switch | ||
| 2888 | statement, to which we get only if a particular path doesn't | ||
| 2889 | match the empty string. */ | ||
| 2890 | boolean path_can_be_null = true; | ||
| 2891 | |||
| 2892 | /* We aren't doing a `succeed_n' to begin with. */ | ||
| 2893 | boolean succeed_n_p = false; | ||
| 2894 | |||
| 2895 | assert (fastmap != NULL && p != NULL); | ||
| 2896 | |||
| 2897 | INIT_FAIL_STACK (); | ||
| 2898 | bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | ||
| 2899 | bufp->fastmap_accurate = 1; /* It will be when we're done. */ | ||
| 2900 | bufp->can_be_null = 0; | ||
| 2901 | |||
| 2902 | while (1) | ||
| 2903 | { | ||
| 2904 | if (p == pend || *p == succeed) | ||
| 2905 | { | ||
| 2906 | /* We have reached the (effective) end of pattern. */ | ||
| 2907 | if (!FAIL_STACK_EMPTY ()) | ||
| 2908 | { | ||
| 2909 | bufp->can_be_null |= path_can_be_null; | ||
| 2910 | |||
| 2911 | /* Reset for next path. */ | ||
| 2912 | path_can_be_null = true; | ||
| 2913 | |||
| 2914 | p = fail_stack.stack[--fail_stack.avail].pointer; | ||
| 2915 | |||
| 2916 | continue; | ||
| 2917 | } | ||
| 2918 | else | ||
| 2919 | break; | ||
| 2920 | } | ||
| 2921 | |||
| 2922 | /* We should never be about to go beyond the end of the pattern. */ | ||
| 2923 | assert (p < pend); | ||
| 2924 | |||
| 2925 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | ||
| 2926 | { | ||
| 2927 | |||
| 2928 | /* I guess the idea here is to simply not bother with a fastmap | ||
| 2929 | if a backreference is used, since it's too hard to figure out | ||
| 2930 | the fastmap for the corresponding group. Setting | ||
| 2931 | `can_be_null' stops `re_search_2' from using the fastmap, so | ||
| 2932 | that is all we do. */ | ||
| 2933 | case duplicate: | ||
| 2934 | bufp->can_be_null = 1; | ||
| 2935 | goto done; | ||
| 2936 | |||
| 2937 | |||
| 2938 | /* Following are the cases which match a character. These end | ||
| 2939 | with `break'. */ | ||
| 2940 | |||
| 2941 | case exactn: | ||
| 2942 | fastmap[p[1]] = 1; | ||
| 2943 | break; | ||
| 2944 | |||
| 2945 | |||
| 2946 | case charset: | ||
| 2947 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | ||
| 2948 | if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | ||
| 2949 | fastmap[j] = 1; | ||
| 2950 | break; | ||
| 2951 | |||
| 2952 | |||
| 2953 | case charset_not: | ||
| 2954 | /* Chars beyond end of map must be allowed. */ | ||
| 2955 | for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) | ||
| 2956 | fastmap[j] = 1; | ||
| 2957 | |||
| 2958 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | ||
| 2959 | if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | ||
| 2960 | fastmap[j] = 1; | ||
| 2961 | break; | ||
| 2962 | |||
| 2963 | |||
| 2964 | case wordchar: | ||
| 2965 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
| 2966 | if (SYNTAX (j) == Sword) | ||
| 2967 | fastmap[j] = 1; | ||
| 2968 | break; | ||
| 2969 | |||
| 2970 | |||
| 2971 | case notwordchar: | ||
| 2972 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
| 2973 | if (SYNTAX (j) != Sword) | ||
| 2974 | fastmap[j] = 1; | ||
| 2975 | break; | ||
| 2976 | |||
| 2977 | |||
| 2978 | case anychar: | ||
| 2979 | { | ||
| 2980 | int fastmap_newline = fastmap['\n']; | ||
| 2981 | |||
| 2982 | /* `.' matches anything ... */ | ||
| 2983 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
| 2984 | fastmap[j] = 1; | ||
| 2985 | |||
| 2986 | /* ... except perhaps newline. */ | ||
| 2987 | if (!(bufp->syntax & RE_DOT_NEWLINE)) | ||
| 2988 | fastmap['\n'] = fastmap_newline; | ||
| 2989 | |||
| 2990 | /* Return if we have already set `can_be_null'; if we have, | ||
| 2991 | then the fastmap is irrelevant. Something's wrong here. */ | ||
| 2992 | else if (bufp->can_be_null) | ||
| 2993 | goto done; | ||
| 2994 | |||
| 2995 | /* Otherwise, have to check alternative paths. */ | ||
| 2996 | break; | ||
| 2997 | } | ||
| 2998 | |||
| 2999 | #ifdef emacs | ||
| 3000 | case syntaxspec: | ||
| 3001 | k = *p++; | ||
| 3002 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
| 3003 | if (SYNTAX (j) == (enum syntaxcode) k) | ||
| 3004 | fastmap[j] = 1; | ||
| 3005 | break; | ||
| 3006 | |||
| 3007 | |||
| 3008 | case notsyntaxspec: | ||
| 3009 | k = *p++; | ||
| 3010 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
| 3011 | if (SYNTAX (j) != (enum syntaxcode) k) | ||
| 3012 | fastmap[j] = 1; | ||
| 3013 | break; | ||
| 3014 | |||
| 3015 | |||
| 3016 | /* All cases after this match the empty string. These end with | ||
| 3017 | `continue'. */ | ||
| 3018 | |||
| 3019 | |||
| 3020 | case before_dot: | ||
| 3021 | case at_dot: | ||
| 3022 | case after_dot: | ||
| 3023 | continue; | ||
| 3024 | #endif /* not emacs */ | ||
| 3025 | |||
| 3026 | |||
| 3027 | case no_op: | ||
| 3028 | case begline: | ||
| 3029 | case endline: | ||
| 3030 | case begbuf: | ||
| 3031 | case endbuf: | ||
| 3032 | case wordbound: | ||
| 3033 | case notwordbound: | ||
| 3034 | case wordbeg: | ||
| 3035 | case wordend: | ||
| 3036 | case push_dummy_failure: | ||
| 3037 | continue; | ||
| 3038 | |||
| 3039 | |||
| 3040 | case jump_n: | ||
| 3041 | case pop_failure_jump: | ||
| 3042 | case maybe_pop_jump: | ||
| 3043 | case jump: | ||
| 3044 | case jump_past_alt: | ||
| 3045 | case dummy_failure_jump: | ||
| 3046 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
| 3047 | p += j; | ||
| 3048 | if (j > 0) | ||
| 3049 | continue; | ||
| 3050 | |||
| 3051 | /* Jump backward implies we just went through the body of a | ||
| 3052 | loop and matched nothing. Opcode jumped to should be | ||
| 3053 | `on_failure_jump' or `succeed_n'. Just treat it like an | ||
| 3054 | ordinary jump. For a * loop, it has pushed its failure | ||
| 3055 | point already; if so, discard that as redundant. */ | ||
| 3056 | if ((re_opcode_t) *p != on_failure_jump | ||
| 3057 | && (re_opcode_t) *p != succeed_n) | ||
| 3058 | continue; | ||
| 3059 | |||
| 3060 | p++; | ||
| 3061 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
| 3062 | p += j; | ||
| 3063 | |||
| 3064 | /* If what's on the stack is where we are now, pop it. */ | ||
| 3065 | if (!FAIL_STACK_EMPTY () | ||
| 3066 | && fail_stack.stack[fail_stack.avail - 1].pointer == p) | ||
| 3067 | fail_stack.avail--; | ||
| 3068 | |||
| 3069 | continue; | ||
| 3070 | |||
| 3071 | |||
| 3072 | case on_failure_jump: | ||
| 3073 | case on_failure_keep_string_jump: | ||
| 3074 | handle_on_failure_jump: | ||
| 3075 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
| 3076 | |||
| 3077 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the | ||
| 3078 | end of the pattern. We don't want to push such a point, | ||
| 3079 | since when we restore it above, entering the switch will | ||
| 3080 | increment `p' past the end of the pattern. We don't need | ||
| 3081 | to push such a point since we obviously won't find any more | ||
| 3082 | fastmap entries beyond `pend'. Such a pattern can match | ||
| 3083 | the null string, though. */ | ||
| 3084 | if (p + j < pend) | ||
| 3085 | { | ||
| 3086 | if (!PUSH_PATTERN_OP (p + j, fail_stack)) | ||
| 3087 | { | ||
| 3088 | RESET_FAIL_STACK (); | ||
| 3089 | return -2; | ||
| 3090 | } | ||
| 3091 | } | ||
| 3092 | else | ||
| 3093 | bufp->can_be_null = 1; | ||
| 3094 | |||
| 3095 | if (succeed_n_p) | ||
| 3096 | { | ||
| 3097 | EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | ||
| 3098 | succeed_n_p = false; | ||
| 3099 | } | ||
| 3100 | |||
| 3101 | continue; | ||
| 3102 | |||
| 3103 | |||
| 3104 | case succeed_n: | ||
| 3105 | /* Get to the number of times to succeed. */ | ||
| 3106 | p += 2; | ||
| 3107 | |||
| 3108 | /* Increment p past the n for when k != 0. */ | ||
| 3109 | EXTRACT_NUMBER_AND_INCR (k, p); | ||
| 3110 | if (k == 0) | ||
| 3111 | { | ||
| 3112 | p -= 4; | ||
| 3113 | succeed_n_p = true; /* Spaghetti code alert. */ | ||
| 3114 | goto handle_on_failure_jump; | ||
| 3115 | } | ||
| 3116 | continue; | ||
| 3117 | |||
| 3118 | |||
| 3119 | case set_number_at: | ||
| 3120 | p += 4; | ||
| 3121 | continue; | ||
| 3122 | |||
| 3123 | |||
| 3124 | case start_memory: | ||
| 3125 | case stop_memory: | ||
| 3126 | p += 2; | ||
| 3127 | continue; | ||
| 3128 | |||
| 3129 | |||
| 3130 | default: | ||
| 3131 | abort (); /* We have listed all the cases. */ | ||
| 3132 | } /* switch *p++ */ | ||
| 3133 | |||
| 3134 | /* Getting here means we have found the possible starting | ||
| 3135 | characters for one path of the pattern -- and that the empty | ||
| 3136 | string does not match. We need not follow this path further. | ||
| 3137 | Instead, look at the next alternative (remembered on the | ||
| 3138 | stack), or quit if no more. The test at the top of the loop | ||
| 3139 | does these things. */ | ||
| 3140 | path_can_be_null = false; | ||
| 3141 | p = pend; | ||
| 3142 | } /* while p */ | ||
| 3143 | |||
| 3144 | /* Set `can_be_null' for the last path (also the first path, if the | ||
| 3145 | pattern is empty). */ | ||
| 3146 | bufp->can_be_null |= path_can_be_null; | ||
| 3147 | |||
| 3148 | done: | ||
| 3149 | RESET_FAIL_STACK (); | ||
| 3150 | return 0; | ||
| 3151 | } /* re_compile_fastmap */ | ||
| 3152 | |||
| 3153 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
| 3154 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | ||
| 3155 | this memory for recording register information. STARTS and ENDS | ||
| 3156 | must be allocated using the malloc library routine, and must each | ||
| 3157 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | ||
| 3158 | |||
| 3159 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
| 3160 | register data. | ||
| 3161 | |||
| 3162 | Unless this function is called, the first search or match using | ||
| 3163 | PATTERN_BUFFER will allocate its own register data, without | ||
| 3164 | freeing the old data. */ | ||
| 3165 | |||
| 3166 | void | ||
| 3167 | re_set_registers (bufp, regs, num_regs, starts, ends) | ||
| 3168 | struct re_pattern_buffer *bufp; | ||
| 3169 | struct re_registers *regs; | ||
| 3170 | unsigned num_regs; | ||
| 3171 | regoff_t *starts, *ends; | ||
| 3172 | { | ||
| 3173 | if (num_regs) | ||
| 3174 | { | ||
| 3175 | bufp->regs_allocated = REGS_REALLOCATE; | ||
| 3176 | regs->num_regs = num_regs; | ||
| 3177 | regs->start = starts; | ||
| 3178 | regs->end = ends; | ||
| 3179 | } | ||
| 3180 | else | ||
| 3181 | { | ||
| 3182 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
| 3183 | regs->num_regs = 0; | ||
| 3184 | regs->start = regs->end = (regoff_t *) 0; | ||
| 3185 | } | ||
| 3186 | } | ||
| 3187 | |||
| 3188 | /* Searching routines. */ | ||
| 3189 | |||
| 3190 | /* Like re_search_2, below, but only one string is specified, and | ||
| 3191 | doesn't let you say where to stop matching. */ | ||
| 3192 | |||
| 3193 | int | ||
| 3194 | re_search (bufp, string, size, startpos, range, regs) | ||
| 3195 | struct re_pattern_buffer *bufp; | ||
| 3196 | const char *string; | ||
| 3197 | int size, startpos, range; | ||
| 3198 | struct re_registers *regs; | ||
| 3199 | { | ||
| 3200 | return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | ||
| 3201 | regs, size); | ||
| 3202 | } | ||
| 3203 | |||
| 3204 | |||
| 3205 | /* Using the compiled pattern in BUFP->buffer, first tries to match the | ||
| 3206 | virtual concatenation of STRING1 and STRING2, starting first at index | ||
| 3207 | STARTPOS, then at STARTPOS + 1, and so on. | ||
| 3208 | |||
| 3209 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | ||
| 3210 | |||
| 3211 | RANGE is how far to scan while trying to match. RANGE = 0 means try | ||
| 3212 | only at STARTPOS; in general, the last start tried is STARTPOS + | ||
| 3213 | RANGE. | ||
| 3214 | |||
| 3215 | In REGS, return the indices of the virtual concatenation of STRING1 | ||
| 3216 | and STRING2 that matched the entire BUFP->buffer and its contained | ||
| 3217 | subexpressions. | ||
| 3218 | |||
| 3219 | Do not consider matching one past the index STOP in the virtual | ||
| 3220 | concatenation of STRING1 and STRING2. | ||
| 3221 | |||
| 3222 | We return either the position in the strings at which the match was | ||
| 3223 | found, -1 if no match, or -2 if error (such as failure | ||
| 3224 | stack overflow). */ | ||
| 3225 | |||
| 3226 | int | ||
| 3227 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) | ||
| 3228 | struct re_pattern_buffer *bufp; | ||
| 3229 | const char *string1, *string2; | ||
| 3230 | int size1, size2; | ||
| 3231 | int startpos; | ||
| 3232 | int range; | ||
| 3233 | struct re_registers *regs; | ||
| 3234 | int stop; | ||
| 3235 | { | ||
| 3236 | int val; | ||
| 3237 | register char *fastmap = bufp->fastmap; | ||
| 3238 | register char *translate = bufp->translate; | ||
| 3239 | int total_size = size1 + size2; | ||
| 3240 | int endpos = startpos + range; | ||
| 3241 | |||
| 3242 | /* Check for out-of-range STARTPOS. */ | ||
| 3243 | if (startpos < 0 || startpos > total_size) | ||
| 3244 | return -1; | ||
| 3245 | |||
| 3246 | /* Fix up RANGE if it might eventually take us outside | ||
| 3247 | the virtual concatenation of STRING1 and STRING2. */ | ||
| 3248 | if (endpos < -1) | ||
| 3249 | range = -1 - startpos; | ||
| 3250 | else if (endpos > total_size) | ||
| 3251 | range = total_size - startpos; | ||
| 3252 | |||
| 3253 | /* If the search isn't to be a backwards one, don't waste time in a | ||
| 3254 | search for a pattern that must be anchored. */ | ||
| 3255 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) | ||
| 3256 | { | ||
| 3257 | if (startpos > 0) | ||
| 3258 | return -1; | ||
| 3259 | else | ||
| 3260 | range = 1; | ||
| 3261 | } | ||
| 3262 | |||
| 3263 | /* Update the fastmap now if not correct already. */ | ||
| 3264 | if (fastmap && !bufp->fastmap_accurate) | ||
| 3265 | if (re_compile_fastmap (bufp) == -2) | ||
| 3266 | return -2; | ||
| 3267 | |||
| 3268 | /* Loop through the string, looking for a place to start matching. */ | ||
| 3269 | for (;;) | ||
| 3270 | { | ||
| 3271 | /* If a fastmap is supplied, skip quickly over characters that | ||
| 3272 | cannot be the start of a match. If the pattern can match the | ||
| 3273 | null string, however, we don't need to skip characters; we want | ||
| 3274 | the first null string. */ | ||
| 3275 | if (fastmap && startpos < total_size && !bufp->can_be_null) | ||
| 3276 | { | ||
| 3277 | if (range > 0) /* Searching forwards. */ | ||
| 3278 | { | ||
| 3279 | register const char *d; | ||
| 3280 | register int lim = 0; | ||
| 3281 | int irange = range; | ||
| 3282 | |||
| 3283 | if (startpos < size1 && startpos + range >= size1) | ||
| 3284 | lim = range - (size1 - startpos); | ||
| 3285 | |||
| 3286 | d = (startpos >= size1 ? string2 - size1 : string1) + startpos; | ||
| 3287 | |||
| 3288 | /* Written out as an if-else to avoid testing `translate' | ||
| 3289 | inside the loop. */ | ||
| 3290 | if (translate) | ||
| 3291 | while (range > lim | ||
| 3292 | && !fastmap[(unsigned char) | ||
| 3293 | translate[(unsigned char) *d++]]) | ||
| 3294 | range--; | ||
| 3295 | else | ||
| 3296 | while (range > lim && !fastmap[(unsigned char) *d++]) | ||
| 3297 | range--; | ||
| 3298 | |||
| 3299 | startpos += irange - range; | ||
| 3300 | } | ||
| 3301 | else /* Searching backwards. */ | ||
| 3302 | { | ||
| 3303 | register char c = (size1 == 0 || startpos >= size1 | ||
| 3304 | ? string2[startpos - size1] | ||
| 3305 | : string1[startpos]); | ||
| 3306 | |||
| 3307 | if (!fastmap[(unsigned char) TRANSLATE (c)]) | ||
| 3308 | goto advance; | ||
| 3309 | } | ||
| 3310 | } | ||
| 3311 | |||
| 3312 | /* If can't match the null string, and that's all we have left, fail. */ | ||
| 3313 | if (range >= 0 && startpos == total_size && fastmap | ||
| 3314 | && !bufp->can_be_null) | ||
| 3315 | return -1; | ||
| 3316 | |||
| 3317 | val = re_match_2_internal (bufp, string1, size1, string2, size2, | ||
| 3318 | startpos, regs, stop); | ||
| 3319 | #ifndef REGEX_MALLOC | ||
| 3320 | #ifdef C_ALLOCA | ||
| 3321 | alloca (0); | ||
| 3322 | #endif | ||
| 3323 | #endif | ||
| 3324 | |||
| 3325 | if (val >= 0) | ||
| 3326 | return startpos; | ||
| 3327 | |||
| 3328 | if (val == -2) | ||
| 3329 | return -2; | ||
| 3330 | |||
| 3331 | advance: | ||
| 3332 | if (!range) | ||
| 3333 | break; | ||
| 3334 | else if (range > 0) | ||
| 3335 | { | ||
| 3336 | range--; | ||
| 3337 | startpos++; | ||
| 3338 | } | ||
| 3339 | else | ||
| 3340 | { | ||
| 3341 | range++; | ||
| 3342 | startpos--; | ||
| 3343 | } | ||
| 3344 | } | ||
| 3345 | return -1; | ||
| 3346 | } /* re_search_2 */ | ||
| 3347 | |||
| 3348 | /* Declarations and macros for re_match_2. */ | ||
| 3349 | |||
| 3350 | static int bcmp_translate (); | ||
| 3351 | static boolean alt_match_null_string_p (), | ||
| 3352 | common_op_match_null_string_p (), | ||
| 3353 | group_match_null_string_p (); | ||
| 3354 | |||
| 3355 | /* This converts PTR, a pointer into one of the search strings `string1' | ||
| 3356 | and `string2' into an offset from the beginning of that string. */ | ||
| 3357 | #define POINTER_TO_OFFSET(ptr) \ | ||
| 3358 | (FIRST_STRING_P (ptr) \ | ||
| 3359 | ? ((regoff_t) ((ptr) - string1)) \ | ||
| 3360 | : ((regoff_t) ((ptr) - string2 + size1))) | ||
| 3361 | |||
| 3362 | /* Macros for dealing with the split strings in re_match_2. */ | ||
| 3363 | |||
| 3364 | #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | ||
| 3365 | |||
| 3366 | /* Call before fetching a character with *d. This switches over to | ||
| 3367 | string2 if necessary. */ | ||
| 3368 | #define PREFETCH() \ | ||
| 3369 | while (d == dend) \ | ||
| 3370 | { \ | ||
| 3371 | /* End of string2 => fail. */ \ | ||
| 3372 | if (dend == end_match_2) \ | ||
| 3373 | goto fail; \ | ||
| 3374 | /* End of string1 => advance to string2. */ \ | ||
| 3375 | d = string2; \ | ||
| 3376 | dend = end_match_2; \ | ||
| 3377 | } | ||
| 3378 | |||
| 3379 | |||
| 3380 | /* Test if at very beginning or at very end of the virtual concatenation | ||
| 3381 | of `string1' and `string2'. If only one string, it's `string2'. */ | ||
| 3382 | #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | ||
| 3383 | #define AT_STRINGS_END(d) ((d) == end2) | ||
| 3384 | |||
| 3385 | |||
| 3386 | /* Test if D points to a character which is word-constituent. We have | ||
| 3387 | two special cases to check for: if past the end of string1, look at | ||
| 3388 | the first character in string2; and if before the beginning of | ||
| 3389 | string2, look at the last character in string1. */ | ||
| 3390 | #define WORDCHAR_P(d) \ | ||
| 3391 | (SYNTAX ((d) == end1 ? *string2 \ | ||
| 3392 | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ | ||
| 3393 | == Sword) | ||
| 3394 | |||
| 3395 | /* Test if the character before D and the one at D differ with respect | ||
| 3396 | to being word-constituent. */ | ||
| 3397 | #define AT_WORD_BOUNDARY(d) \ | ||
| 3398 | (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ | ||
| 3399 | || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) | ||
| 3400 | |||
| 3401 | |||
| 3402 | /* Free everything we malloc. */ | ||
| 3403 | #ifdef MATCH_MAY_ALLOCATE | ||
| 3404 | #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL | ||
| 3405 | #define FREE_VARIABLES() \ | ||
| 3406 | do { \ | ||
| 3407 | REGEX_FREE_STACK (fail_stack.stack); \ | ||
| 3408 | FREE_VAR (regstart); \ | ||
| 3409 | FREE_VAR (regend); \ | ||
| 3410 | FREE_VAR (old_regstart); \ | ||
| 3411 | FREE_VAR (old_regend); \ | ||
| 3412 | FREE_VAR (best_regstart); \ | ||
| 3413 | FREE_VAR (best_regend); \ | ||
| 3414 | FREE_VAR (reg_info); \ | ||
| 3415 | FREE_VAR (reg_dummy); \ | ||
| 3416 | FREE_VAR (reg_info_dummy); \ | ||
| 3417 | } while (0) | ||
| 3418 | #else | ||
| 3419 | #define FREE_VARIABLES() /* Do nothing! */ | ||
| 3420 | #endif /* not MATCH_MAY_ALLOCATE */ | ||
| 3421 | |||
| 3422 | /* These values must meet several constraints. They must not be valid | ||
| 3423 | register values; since we have a limit of 255 registers (because | ||
| 3424 | we use only one byte in the pattern for the register number), we can | ||
| 3425 | use numbers larger than 255. They must differ by 1, because of | ||
| 3426 | NUM_FAILURE_ITEMS above. And the value for the lowest register must | ||
| 3427 | be larger than the value for the highest register, so we do not try | ||
| 3428 | to actually save any registers when none are active. */ | ||
| 3429 | #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | ||
| 3430 | #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | ||
| 3431 | |||
| 3432 | /* Matching routines. */ | ||
| 3433 | |||
| 3434 | #ifndef emacs /* Emacs never uses this. */ | ||
| 3435 | /* re_match is like re_match_2 except it takes only a single string. */ | ||
| 3436 | |||
| 3437 | int | ||
| 3438 | re_match (bufp, string, size, pos, regs) | ||
| 3439 | struct re_pattern_buffer *bufp; | ||
| 3440 | const char *string; | ||
| 3441 | int size, pos; | ||
| 3442 | struct re_registers *regs; | ||
| 3443 | { | ||
| 3444 | int result = re_match_2_internal (bufp, NULL, 0, string, size, | ||
| 3445 | pos, regs, size); | ||
| 3446 | alloca (0); | ||
| 3447 | return result; | ||
| 3448 | } | ||
| 3449 | #endif /* not emacs */ | ||
| 3450 | |||
| 3451 | |||
| 3452 | /* re_match_2 matches the compiled pattern in BUFP against the | ||
| 3453 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | ||
| 3454 | and SIZE2, respectively). We start matching at POS, and stop | ||
| 3455 | matching at STOP. | ||
| 3456 | |||
| 3457 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | ||
| 3458 | store offsets for the substring each group matched in REGS. See the | ||
| 3459 | documentation for exactly how many groups we fill. | ||
| 3460 | |||
| 3461 | We return -1 if no match, -2 if an internal error (such as the | ||
| 3462 | failure stack overflowing). Otherwise, we return the length of the | ||
| 3463 | matched substring. */ | ||
| 3464 | |||
| 3465 | int | ||
| 3466 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | ||
| 3467 | struct re_pattern_buffer *bufp; | ||
| 3468 | const char *string1, *string2; | ||
| 3469 | int size1, size2; | ||
| 3470 | int pos; | ||
| 3471 | struct re_registers *regs; | ||
| 3472 | int stop; | ||
| 3473 | { | ||
| 3474 | int result = re_match_2_internal (bufp, string1, size1, string2, size2, | ||
| 3475 | pos, regs, stop); | ||
| 3476 | alloca (0); | ||
| 3477 | return result; | ||
| 3478 | } | ||
| 3479 | |||
| 3480 | /* This is a separate function so that we can force an alloca cleanup | ||
| 3481 | afterwards. */ | ||
| 3482 | static int | ||
| 3483 | re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) | ||
| 3484 | struct re_pattern_buffer *bufp; | ||
| 3485 | const char *string1, *string2; | ||
| 3486 | int size1, size2; | ||
| 3487 | int pos; | ||
| 3488 | struct re_registers *regs; | ||
| 3489 | int stop; | ||
| 3490 | { | ||
| 3491 | /* General temporaries. */ | ||
| 3492 | int mcnt; | ||
| 3493 | unsigned char *p1; | ||
| 3494 | |||
| 3495 | /* Just past the end of the corresponding string. */ | ||
| 3496 | const char *end1, *end2; | ||
| 3497 | |||
| 3498 | /* Pointers into string1 and string2, just past the last characters in | ||
| 3499 | each to consider matching. */ | ||
| 3500 | const char *end_match_1, *end_match_2; | ||
| 3501 | |||
| 3502 | /* Where we are in the data, and the end of the current string. */ | ||
| 3503 | const char *d, *dend; | ||
| 3504 | |||
| 3505 | /* Where we are in the pattern, and the end of the pattern. */ | ||
| 3506 | unsigned char *p = bufp->buffer; | ||
| 3507 | register unsigned char *pend = p + bufp->used; | ||
| 3508 | |||
| 3509 | /* Mark the opcode just after a start_memory, so we can test for an | ||
| 3510 | empty subpattern when we get to the stop_memory. */ | ||
| 3511 | unsigned char *just_past_start_mem = 0; | ||
| 3512 | |||
| 3513 | /* We use this to map every character in the string. */ | ||
| 3514 | char *translate = bufp->translate; | ||
| 3515 | |||
| 3516 | /* Failure point stack. Each place that can handle a failure further | ||
| 3517 | down the line pushes a failure point on this stack. It consists of | ||
| 3518 | restart, regend, and reg_info for all registers corresponding to | ||
| 3519 | the subexpressions we're currently inside, plus the number of such | ||
| 3520 | registers, and, finally, two char *'s. The first char * is where | ||
| 3521 | to resume scanning the pattern; the second one is where to resume | ||
| 3522 | scanning the strings. If the latter is zero, the failure point is | ||
| 3523 | a ``dummy''; if a failure happens and the failure point is a dummy, | ||
| 3524 | it gets discarded and the next next one is tried. */ | ||
| 3525 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | ||
| 3526 | fail_stack_type fail_stack; | ||
| 3527 | #endif | ||
| 3528 | #ifdef DEBUG | ||
| 3529 | static unsigned failure_id = 0; | ||
| 3530 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | ||
| 3531 | #endif | ||
| 3532 | |||
| 3533 | /* This holds the pointer to the failure stack, when | ||
| 3534 | it is allocated relocatably. */ | ||
| 3535 | fail_stack_elt_t *failure_stack_ptr; | ||
| 3536 | |||
| 3537 | /* We fill all the registers internally, independent of what we | ||
| 3538 | return, for use in backreferences. The number here includes | ||
| 3539 | an element for register zero. */ | ||
| 3540 | unsigned num_regs = bufp->re_nsub + 1; | ||
| 3541 | |||
| 3542 | /* The currently active registers. */ | ||
| 3543 | unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
| 3544 | unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
| 3545 | |||
| 3546 | /* Information on the contents of registers. These are pointers into | ||
| 3547 | the input strings; they record just what was matched (on this | ||
| 3548 | attempt) by a subexpression part of the pattern, that is, the | ||
| 3549 | regnum-th regstart pointer points to where in the pattern we began | ||
| 3550 | matching and the regnum-th regend points to right after where we | ||
| 3551 | stopped matching the regnum-th subexpression. (The zeroth register | ||
| 3552 | keeps track of what the whole pattern matches.) */ | ||
| 3553 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | ||
| 3554 | const char **regstart, **regend; | ||
| 3555 | #endif | ||
| 3556 | |||
| 3557 | /* If a group that's operated upon by a repetition operator fails to | ||
| 3558 | match anything, then the register for its start will need to be | ||
| 3559 | restored because it will have been set to wherever in the string we | ||
| 3560 | are when we last see its open-group operator. Similarly for a | ||
| 3561 | register's end. */ | ||
| 3562 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | ||
| 3563 | const char **old_regstart, **old_regend; | ||
| 3564 | #endif | ||
| 3565 | |||
| 3566 | /* The is_active field of reg_info helps us keep track of which (possibly | ||
| 3567 | nested) subexpressions we are currently in. The matched_something | ||
| 3568 | field of reg_info[reg_num] helps us tell whether or not we have | ||
| 3569 | matched any of the pattern so far this time through the reg_num-th | ||
| 3570 | subexpression. These two fields get reset each time through any | ||
| 3571 | loop their register is in. */ | ||
| 3572 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | ||
| 3573 | register_info_type *reg_info; | ||
| 3574 | #endif | ||
| 3575 | |||
| 3576 | /* The following record the register info as found in the above | ||
| 3577 | variables when we find a match better than any we've seen before. | ||
| 3578 | This happens as we backtrack through the failure points, which in | ||
| 3579 | turn happens only if we have not yet matched the entire string. */ | ||
| 3580 | unsigned best_regs_set = false; | ||
| 3581 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | ||
| 3582 | const char **best_regstart, **best_regend; | ||
| 3583 | #endif | ||
| 3584 | |||
| 3585 | /* Logically, this is `best_regend[0]'. But we don't want to have to | ||
| 3586 | allocate space for that if we're not allocating space for anything | ||
| 3587 | else (see below). Also, we never need info about register 0 for | ||
| 3588 | any of the other register vectors, and it seems rather a kludge to | ||
| 3589 | treat `best_regend' differently than the rest. So we keep track of | ||
| 3590 | the end of the best match so far in a separate variable. We | ||
| 3591 | initialize this to NULL so that when we backtrack the first time | ||
| 3592 | and need to test it, it's not garbage. */ | ||
| 3593 | const char *match_end = NULL; | ||
| 3594 | |||
| 3595 | /* This helps SET_REGS_MATCHED avoid doing redundant work. */ | ||
| 3596 | int set_regs_matched_done = 0; | ||
| 3597 | |||
| 3598 | /* Used when we pop values we don't care about. */ | ||
| 3599 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | ||
| 3600 | const char **reg_dummy; | ||
| 3601 | register_info_type *reg_info_dummy; | ||
| 3602 | #endif | ||
| 3603 | |||
| 3604 | #ifdef DEBUG | ||
| 3605 | /* Counts the total number of registers pushed. */ | ||
| 3606 | unsigned num_regs_pushed = 0; | ||
| 3607 | #endif | ||
| 3608 | |||
| 3609 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); | ||
| 3610 | |||
| 3611 | INIT_FAIL_STACK (); | ||
| 3612 | |||
| 3613 | #ifdef MATCH_MAY_ALLOCATE | ||
| 3614 | /* Do not bother to initialize all the register variables if there are | ||
| 3615 | no groups in the pattern, as it takes a fair amount of time. If | ||
| 3616 | there are groups, we include space for register 0 (the whole | ||
| 3617 | pattern), even though we never use it, since it simplifies the | ||
| 3618 | array indexing. We should fix this. */ | ||
| 3619 | if (bufp->re_nsub) | ||
| 3620 | { | ||
| 3621 | regstart = REGEX_TALLOC (num_regs, const char *); | ||
| 3622 | regend = REGEX_TALLOC (num_regs, const char *); | ||
| 3623 | old_regstart = REGEX_TALLOC (num_regs, const char *); | ||
| 3624 | old_regend = REGEX_TALLOC (num_regs, const char *); | ||
| 3625 | best_regstart = REGEX_TALLOC (num_regs, const char *); | ||
| 3626 | best_regend = REGEX_TALLOC (num_regs, const char *); | ||
| 3627 | reg_info = REGEX_TALLOC (num_regs, register_info_type); | ||
| 3628 | reg_dummy = REGEX_TALLOC (num_regs, const char *); | ||
| 3629 | reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); | ||
| 3630 | |||
| 3631 | if (!(regstart && regend && old_regstart && old_regend && reg_info | ||
| 3632 | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | ||
| 3633 | { | ||
| 3634 | FREE_VARIABLES (); | ||
| 3635 | return -2; | ||
| 3636 | } | ||
| 3637 | } | ||
| 3638 | else | ||
| 3639 | { | ||
| 3640 | /* We must initialize all our variables to NULL, so that | ||
| 3641 | `FREE_VARIABLES' doesn't try to free them. */ | ||
| 3642 | regstart = regend = old_regstart = old_regend = best_regstart | ||
| 3643 | = best_regend = reg_dummy = NULL; | ||
| 3644 | reg_info = reg_info_dummy = (register_info_type *) NULL; | ||
| 3645 | } | ||
| 3646 | #endif /* MATCH_MAY_ALLOCATE */ | ||
| 3647 | |||
| 3648 | /* The starting position is bogus. */ | ||
| 3649 | if (pos < 0 || pos > size1 + size2) | ||
| 3650 | { | ||
| 3651 | FREE_VARIABLES (); | ||
| 3652 | return -1; | ||
| 3653 | } | ||
| 3654 | |||
| 3655 | /* Initialize subexpression text positions to -1 to mark ones that no | ||
| 3656 | start_memory/stop_memory has been seen for. Also initialize the | ||
| 3657 | register information struct. */ | ||
| 3658 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
| 3659 | { | ||
| 3660 | regstart[mcnt] = regend[mcnt] | ||
| 3661 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | ||
| 3662 | |||
| 3663 | REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | ||
| 3664 | IS_ACTIVE (reg_info[mcnt]) = 0; | ||
| 3665 | MATCHED_SOMETHING (reg_info[mcnt]) = 0; | ||
| 3666 | EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | ||
| 3667 | } | ||
| 3668 | |||
| 3669 | /* We move `string1' into `string2' if the latter's empty -- but not if | ||
| 3670 | `string1' is null. */ | ||
| 3671 | if (size2 == 0 && string1 != NULL) | ||
| 3672 | { | ||
| 3673 | string2 = string1; | ||
| 3674 | size2 = size1; | ||
| 3675 | string1 = 0; | ||
| 3676 | size1 = 0; | ||
| 3677 | } | ||
| 3678 | end1 = string1 + size1; | ||
| 3679 | end2 = string2 + size2; | ||
| 3680 | |||
| 3681 | /* Compute where to stop matching, within the two strings. */ | ||
| 3682 | if (stop <= size1) | ||
| 3683 | { | ||
| 3684 | end_match_1 = string1 + stop; | ||
| 3685 | end_match_2 = string2; | ||
| 3686 | } | ||
| 3687 | else | ||
| 3688 | { | ||
| 3689 | end_match_1 = end1; | ||
| 3690 | end_match_2 = string2 + stop - size1; | ||
| 3691 | } | ||
| 3692 | |||
| 3693 | /* `p' scans through the pattern as `d' scans through the data. | ||
| 3694 | `dend' is the end of the input string that `d' points within. `d' | ||
| 3695 | is advanced into the following input string whenever necessary, but | ||
| 3696 | this happens before fetching; therefore, at the beginning of the | ||
| 3697 | loop, `d' can be pointing at the end of a string, but it cannot | ||
| 3698 | equal `string2'. */ | ||
| 3699 | if (size1 > 0 && pos <= size1) | ||
| 3700 | { | ||
| 3701 | d = string1 + pos; | ||
| 3702 | dend = end_match_1; | ||
| 3703 | } | ||
| 3704 | else | ||
| 3705 | { | ||
| 3706 | d = string2 + pos - size1; | ||
| 3707 | dend = end_match_2; | ||
| 3708 | } | ||
| 3709 | |||
| 3710 | DEBUG_PRINT1 ("The compiled pattern is: "); | ||
| 3711 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | ||
| 3712 | DEBUG_PRINT1 ("The string to match is: `"); | ||
| 3713 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | ||
| 3714 | DEBUG_PRINT1 ("'\n"); | ||
| 3715 | |||
| 3716 | /* This loops over pattern commands. It exits by returning from the | ||
| 3717 | function if the match is complete, or it drops through if the match | ||
| 3718 | fails at this starting point in the input data. */ | ||
| 3719 | for (;;) | ||
| 3720 | { | ||
| 3721 | DEBUG_PRINT2 ("\n0x%x: ", p); | ||
| 3722 | |||
| 3723 | if (p == pend) | ||
| 3724 | { /* End of pattern means we might have succeeded. */ | ||
| 3725 | DEBUG_PRINT1 ("end of pattern ... "); | ||
| 3726 | |||
| 3727 | /* If we haven't matched the entire string, and we want the | ||
| 3728 | longest match, try backtracking. */ | ||
| 3729 | if (d != end_match_2) | ||
| 3730 | { | ||
| 3731 | /* 1 if this match ends in the same string (string1 or string2) | ||
| 3732 | as the best previous match. */ | ||
| 3733 | boolean same_str_p = (FIRST_STRING_P (match_end) | ||
| 3734 | == MATCHING_IN_FIRST_STRING); | ||
| 3735 | /* 1 if this match is the best seen so far. */ | ||
| 3736 | boolean best_match_p; | ||
| 3737 | |||
| 3738 | /* AIX compiler got confused when this was combined | ||
| 3739 | with the previous declaration. */ | ||
| 3740 | if (same_str_p) | ||
| 3741 | best_match_p = d > match_end; | ||
| 3742 | else | ||
| 3743 | best_match_p = !MATCHING_IN_FIRST_STRING; | ||
| 3744 | |||
| 3745 | DEBUG_PRINT1 ("backtracking.\n"); | ||
| 3746 | |||
| 3747 | if (!FAIL_STACK_EMPTY ()) | ||
| 3748 | { /* More failure points to try. */ | ||
| 3749 | |||
| 3750 | /* If exceeds best match so far, save it. */ | ||
| 3751 | if (!best_regs_set || best_match_p) | ||
| 3752 | { | ||
| 3753 | best_regs_set = true; | ||
| 3754 | match_end = d; | ||
| 3755 | |||
| 3756 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | ||
| 3757 | |||
| 3758 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
| 3759 | { | ||
| 3760 | best_regstart[mcnt] = regstart[mcnt]; | ||
| 3761 | best_regend[mcnt] = regend[mcnt]; | ||
| 3762 | } | ||
| 3763 | } | ||
| 3764 | goto fail; | ||
| 3765 | } | ||
| 3766 | |||
| 3767 | /* If no failure points, don't restore garbage. And if | ||
| 3768 | last match is real best match, don't restore second | ||
| 3769 | best one. */ | ||
| 3770 | else if (best_regs_set && !best_match_p) | ||
| 3771 | { | ||
| 3772 | restore_best_regs: | ||
| 3773 | /* Restore best match. It may happen that `dend == | ||
| 3774 | end_match_1' while the restored d is in string2. | ||
| 3775 | For example, the pattern `x.*y.*z' against the | ||
| 3776 | strings `x-' and `y-z-', if the two strings are | ||
| 3777 | not consecutive in memory. */ | ||
| 3778 | DEBUG_PRINT1 ("Restoring best registers.\n"); | ||
| 3779 | |||
| 3780 | d = match_end; | ||
| 3781 | dend = ((d >= string1 && d <= end1) | ||
| 3782 | ? end_match_1 : end_match_2); | ||
| 3783 | |||
| 3784 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
| 3785 | { | ||
| 3786 | regstart[mcnt] = best_regstart[mcnt]; | ||
| 3787 | regend[mcnt] = best_regend[mcnt]; | ||
| 3788 | } | ||
| 3789 | } | ||
| 3790 | } /* d != end_match_2 */ | ||
| 3791 | |||
| 3792 | succeed_label: | ||
| 3793 | DEBUG_PRINT1 ("Accepting match.\n"); | ||
| 3794 | |||
| 3795 | /* If caller wants register contents data back, do it. */ | ||
| 3796 | if (regs && !bufp->no_sub) | ||
| 3797 | { | ||
| 3798 | /* Have the register data arrays been allocated? */ | ||
| 3799 | if (bufp->regs_allocated == REGS_UNALLOCATED) | ||
| 3800 | { /* No. So allocate them with malloc. We need one | ||
| 3801 | extra element beyond `num_regs' for the `-1' marker | ||
| 3802 | GNU code uses. */ | ||
| 3803 | regs->num_regs = MAX (RE_NREGS, num_regs + 1); | ||
| 3804 | regs->start = TALLOC (regs->num_regs, regoff_t); | ||
| 3805 | regs->end = TALLOC (regs->num_regs, regoff_t); | ||
| 3806 | if (regs->start == NULL || regs->end == NULL) | ||
| 3807 | { | ||
| 3808 | FREE_VARIABLES (); | ||
| 3809 | return -2; | ||
| 3810 | } | ||
| 3811 | bufp->regs_allocated = REGS_REALLOCATE; | ||
| 3812 | } | ||
| 3813 | else if (bufp->regs_allocated == REGS_REALLOCATE) | ||
| 3814 | { /* Yes. If we need more elements than were already | ||
| 3815 | allocated, reallocate them. If we need fewer, just | ||
| 3816 | leave it alone. */ | ||
| 3817 | if (regs->num_regs < num_regs + 1) | ||
| 3818 | { | ||
| 3819 | regs->num_regs = num_regs + 1; | ||
| 3820 | RETALLOC (regs->start, regs->num_regs, regoff_t); | ||
| 3821 | RETALLOC (regs->end, regs->num_regs, regoff_t); | ||
| 3822 | if (regs->start == NULL || regs->end == NULL) | ||
| 3823 | { | ||
| 3824 | FREE_VARIABLES (); | ||
| 3825 | return -2; | ||
| 3826 | } | ||
| 3827 | } | ||
| 3828 | } | ||
| 3829 | else | ||
| 3830 | { | ||
| 3831 | /* These braces fend off a "empty body in an else-statement" | ||
| 3832 | warning under GCC when assert expands to nothing. */ | ||
| 3833 | assert (bufp->regs_allocated == REGS_FIXED); | ||
| 3834 | } | ||
| 3835 | |||
| 3836 | /* Convert the pointer data in `regstart' and `regend' to | ||
| 3837 | indices. Register zero has to be set differently, | ||
| 3838 | since we haven't kept track of any info for it. */ | ||
| 3839 | if (regs->num_regs > 0) | ||
| 3840 | { | ||
| 3841 | regs->start[0] = pos; | ||
| 3842 | regs->end[0] = (MATCHING_IN_FIRST_STRING | ||
| 3843 | ? ((regoff_t) (d - string1)) | ||
| 3844 | : ((regoff_t) (d - string2 + size1))); | ||
| 3845 | } | ||
| 3846 | |||
| 3847 | /* Go through the first `min (num_regs, regs->num_regs)' | ||
| 3848 | registers, since that is all we initialized. */ | ||
| 3849 | for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) | ||
| 3850 | { | ||
| 3851 | if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) | ||
| 3852 | regs->start[mcnt] = regs->end[mcnt] = -1; | ||
| 3853 | else | ||
| 3854 | { | ||
| 3855 | regs->start[mcnt] | ||
| 3856 | = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); | ||
| 3857 | regs->end[mcnt] | ||
| 3858 | = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); | ||
| 3859 | } | ||
| 3860 | } | ||
| 3861 | |||
| 3862 | /* If the regs structure we return has more elements than | ||
| 3863 | were in the pattern, set the extra elements to -1. If | ||
| 3864 | we (re)allocated the registers, this is the case, | ||
| 3865 | because we always allocate enough to have at least one | ||
| 3866 | -1 at the end. */ | ||
| 3867 | for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | ||
| 3868 | regs->start[mcnt] = regs->end[mcnt] = -1; | ||
| 3869 | } /* regs && !bufp->no_sub */ | ||
| 3870 | |||
| 3871 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | ||
| 3872 | nfailure_points_pushed, nfailure_points_popped, | ||
| 3873 | nfailure_points_pushed - nfailure_points_popped); | ||
| 3874 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | ||
| 3875 | |||
| 3876 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING | ||
| 3877 | ? string1 | ||
| 3878 | : string2 - size1); | ||
| 3879 | |||
| 3880 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | ||
| 3881 | |||
| 3882 | FREE_VARIABLES (); | ||
| 3883 | return mcnt; | ||
| 3884 | } | ||
| 3885 | |||
| 3886 | /* Otherwise match next pattern command. */ | ||
| 3887 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | ||
| 3888 | { | ||
| 3889 | /* Ignore these. Used to ignore the n of succeed_n's which | ||
| 3890 | currently have n == 0. */ | ||
| 3891 | case no_op: | ||
| 3892 | DEBUG_PRINT1 ("EXECUTING no_op.\n"); | ||
| 3893 | break; | ||
| 3894 | |||
| 3895 | case succeed: | ||
| 3896 | DEBUG_PRINT1 ("EXECUTING succeed.\n"); | ||
| 3897 | goto succeed_label; | ||
| 3898 | |||
| 3899 | /* Match the next n pattern characters exactly. The following | ||
| 3900 | byte in the pattern defines n, and the n bytes after that | ||
| 3901 | are the characters to match. */ | ||
| 3902 | case exactn: | ||
| 3903 | mcnt = *p++; | ||
| 3904 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | ||
| 3905 | |||
| 3906 | /* This is written out as an if-else so we don't waste time | ||
| 3907 | testing `translate' inside the loop. */ | ||
| 3908 | if (translate) | ||
| 3909 | { | ||
| 3910 | do | ||
| 3911 | { | ||
| 3912 | PREFETCH (); | ||
| 3913 | if (translate[(unsigned char) *d++] != (char) *p++) | ||
| 3914 | goto fail; | ||
| 3915 | } | ||
| 3916 | while (--mcnt); | ||
| 3917 | } | ||
| 3918 | else | ||
| 3919 | { | ||
| 3920 | do | ||
| 3921 | { | ||
| 3922 | PREFETCH (); | ||
| 3923 | if (*d++ != (char) *p++) goto fail; | ||
| 3924 | } | ||
| 3925 | while (--mcnt); | ||
| 3926 | } | ||
| 3927 | SET_REGS_MATCHED (); | ||
| 3928 | break; | ||
| 3929 | |||
| 3930 | |||
| 3931 | /* Match any character except possibly a newline or a null. */ | ||
| 3932 | case anychar: | ||
| 3933 | DEBUG_PRINT1 ("EXECUTING anychar.\n"); | ||
| 3934 | |||
| 3935 | PREFETCH (); | ||
| 3936 | |||
| 3937 | if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') | ||
| 3938 | || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) | ||
| 3939 | goto fail; | ||
| 3940 | |||
| 3941 | SET_REGS_MATCHED (); | ||
| 3942 | DEBUG_PRINT2 (" Matched `%d'.\n", *d); | ||
| 3943 | d++; | ||
| 3944 | break; | ||
| 3945 | |||
| 3946 | |||
| 3947 | case charset: | ||
| 3948 | case charset_not: | ||
| 3949 | { | ||
| 3950 | register unsigned char c; | ||
| 3951 | boolean not = (re_opcode_t) *(p - 1) == charset_not; | ||
| 3952 | |||
| 3953 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | ||
| 3954 | |||
| 3955 | PREFETCH (); | ||
| 3956 | c = TRANSLATE (*d); /* The character to match. */ | ||
| 3957 | |||
| 3958 | /* Cast to `unsigned' instead of `unsigned char' in case the | ||
| 3959 | bit list is a full 32 bytes long. */ | ||
| 3960 | if (c < (unsigned) (*p * BYTEWIDTH) | ||
| 3961 | && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | ||
| 3962 | not = !not; | ||
| 3963 | |||
| 3964 | p += 1 + *p; | ||
| 3965 | |||
| 3966 | if (!not) goto fail; | ||
| 3967 | |||
| 3968 | SET_REGS_MATCHED (); | ||
| 3969 | d++; | ||
| 3970 | break; | ||
| 3971 | } | ||
| 3972 | |||
| 3973 | |||
| 3974 | /* The beginning of a group is represented by start_memory. | ||
| 3975 | The arguments are the register number in the next byte, and the | ||
| 3976 | number of groups inner to this one in the next. The text | ||
| 3977 | matched within the group is recorded (in the internal | ||
| 3978 | registers data structure) under the register number. */ | ||
| 3979 | case start_memory: | ||
| 3980 | DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | ||
| 3981 | |||
| 3982 | /* Find out if this group can match the empty string. */ | ||
| 3983 | p1 = p; /* To send to group_match_null_string_p. */ | ||
| 3984 | |||
| 3985 | if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | ||
| 3986 | REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
| 3987 | = group_match_null_string_p (&p1, pend, reg_info); | ||
| 3988 | |||
| 3989 | /* Save the position in the string where we were the last time | ||
| 3990 | we were at this open-group operator in case the group is | ||
| 3991 | operated upon by a repetition operator, e.g., with `(a*)*b' | ||
| 3992 | against `ab'; then we want to ignore where we are now in | ||
| 3993 | the string in case this attempt to match fails. */ | ||
| 3994 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
| 3995 | ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | ||
| 3996 | : regstart[*p]; | ||
| 3997 | DEBUG_PRINT2 (" old_regstart: %d\n", | ||
| 3998 | POINTER_TO_OFFSET (old_regstart[*p])); | ||
| 3999 | |||
| 4000 | regstart[*p] = d; | ||
| 4001 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | ||
| 4002 | |||
| 4003 | IS_ACTIVE (reg_info[*p]) = 1; | ||
| 4004 | MATCHED_SOMETHING (reg_info[*p]) = 0; | ||
| 4005 | |||
| 4006 | /* Clear this whenever we change the register activity status. */ | ||
| 4007 | set_regs_matched_done = 0; | ||
| 4008 | |||
| 4009 | /* This is the new highest active register. */ | ||
| 4010 | highest_active_reg = *p; | ||
| 4011 | |||
| 4012 | /* If nothing was active before, this is the new lowest active | ||
| 4013 | register. */ | ||
| 4014 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | ||
| 4015 | lowest_active_reg = *p; | ||
| 4016 | |||
| 4017 | /* Move past the register number and inner group count. */ | ||
| 4018 | p += 2; | ||
| 4019 | just_past_start_mem = p; | ||
| 4020 | |||
| 4021 | break; | ||
| 4022 | |||
| 4023 | |||
| 4024 | /* The stop_memory opcode represents the end of a group. Its | ||
| 4025 | arguments are the same as start_memory's: the register | ||
| 4026 | number, and the number of inner groups. */ | ||
| 4027 | case stop_memory: | ||
| 4028 | DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | ||
| 4029 | |||
| 4030 | /* We need to save the string position the last time we were at | ||
| 4031 | this close-group operator in case the group is operated | ||
| 4032 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | ||
| 4033 | against `aba'; then we want to ignore where we are now in | ||
| 4034 | the string in case this attempt to match fails. */ | ||
| 4035 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
| 4036 | ? REG_UNSET (regend[*p]) ? d : regend[*p] | ||
| 4037 | : regend[*p]; | ||
| 4038 | DEBUG_PRINT2 (" old_regend: %d\n", | ||
| 4039 | POINTER_TO_OFFSET (old_regend[*p])); | ||
| 4040 | |||
| 4041 | regend[*p] = d; | ||
| 4042 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | ||
| 4043 | |||
| 4044 | /* This register isn't active anymore. */ | ||
| 4045 | IS_ACTIVE (reg_info[*p]) = 0; | ||
| 4046 | |||
| 4047 | /* Clear this whenever we change the register activity status. */ | ||
| 4048 | set_regs_matched_done = 0; | ||
| 4049 | |||
| 4050 | /* If this was the only register active, nothing is active | ||
| 4051 | anymore. */ | ||
| 4052 | if (lowest_active_reg == highest_active_reg) | ||
| 4053 | { | ||
| 4054 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
| 4055 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
| 4056 | } | ||
| 4057 | else | ||
| 4058 | { /* We must scan for the new highest active register, since | ||
| 4059 | it isn't necessarily one less than now: consider | ||
| 4060 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the | ||
| 4061 | new highest active register is 1. */ | ||
| 4062 | unsigned char r = *p - 1; | ||
| 4063 | while (r > 0 && !IS_ACTIVE (reg_info[r])) | ||
| 4064 | r--; | ||
| 4065 | |||
| 4066 | /* If we end up at register zero, that means that we saved | ||
| 4067 | the registers as the result of an `on_failure_jump', not | ||
| 4068 | a `start_memory', and we jumped to past the innermost | ||
| 4069 | `stop_memory'. For example, in ((.)*) we save | ||
| 4070 | registers 1 and 2 as a result of the *, but when we pop | ||
| 4071 | back to the second ), we are at the stop_memory 1. | ||
| 4072 | Thus, nothing is active. */ | ||
| 4073 | if (r == 0) | ||
| 4074 | { | ||
| 4075 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
| 4076 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
| 4077 | } | ||
| 4078 | else | ||
| 4079 | highest_active_reg = r; | ||
| 4080 | } | ||
| 4081 | |||
| 4082 | /* If just failed to match something this time around with a | ||
| 4083 | group that's operated on by a repetition operator, try to | ||
| 4084 | force exit from the ``loop'', and restore the register | ||
| 4085 | information for this group that we had before trying this | ||
| 4086 | last match. */ | ||
| 4087 | if ((!MATCHED_SOMETHING (reg_info[*p]) | ||
| 4088 | || just_past_start_mem == p - 1) | ||
| 4089 | && (p + 2) < pend) | ||
| 4090 | { | ||
| 4091 | boolean is_a_jump_n = false; | ||
| 4092 | |||
| 4093 | p1 = p + 2; | ||
| 4094 | mcnt = 0; | ||
| 4095 | switch ((re_opcode_t) *p1++) | ||
| 4096 | { | ||
| 4097 | case jump_n: | ||
| 4098 | is_a_jump_n = true; | ||
| 4099 | case pop_failure_jump: | ||
| 4100 | case maybe_pop_jump: | ||
| 4101 | case jump: | ||
| 4102 | case dummy_failure_jump: | ||
| 4103 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 4104 | if (is_a_jump_n) | ||
| 4105 | p1 += 2; | ||
| 4106 | break; | ||
| 4107 | |||
| 4108 | default: | ||
| 4109 | /* do nothing */ ; | ||
| 4110 | } | ||
| 4111 | p1 += mcnt; | ||
| 4112 | |||
| 4113 | /* If the next operation is a jump backwards in the pattern | ||
| 4114 | to an on_failure_jump right before the start_memory | ||
| 4115 | corresponding to this stop_memory, exit from the loop | ||
| 4116 | by forcing a failure after pushing on the stack the | ||
| 4117 | on_failure_jump's jump in the pattern, and d. */ | ||
| 4118 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | ||
| 4119 | && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | ||
| 4120 | { | ||
| 4121 | /* If this group ever matched anything, then restore | ||
| 4122 | what its registers were before trying this last | ||
| 4123 | failed match, e.g., with `(a*)*b' against `ab' for | ||
| 4124 | regstart[1], and, e.g., with `((a*)*(b*)*)*' | ||
| 4125 | against `aba' for regend[3]. | ||
| 4126 | |||
| 4127 | Also restore the registers for inner groups for, | ||
| 4128 | e.g., `((a*)(b*))*' against `aba' (register 3 would | ||
| 4129 | otherwise get trashed). */ | ||
| 4130 | |||
| 4131 | if (EVER_MATCHED_SOMETHING (reg_info[*p])) | ||
| 4132 | { | ||
| 4133 | unsigned r; | ||
| 4134 | |||
| 4135 | EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | ||
| 4136 | |||
| 4137 | /* Restore this and inner groups' (if any) registers. */ | ||
| 4138 | for (r = *p; r < *p + *(p + 1); r++) | ||
| 4139 | { | ||
| 4140 | regstart[r] = old_regstart[r]; | ||
| 4141 | |||
| 4142 | /* xx why this test? */ | ||
| 4143 | if (old_regend[r] >= regstart[r]) | ||
| 4144 | regend[r] = old_regend[r]; | ||
| 4145 | } | ||
| 4146 | } | ||
| 4147 | p1++; | ||
| 4148 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 4149 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | ||
| 4150 | |||
| 4151 | goto fail; | ||
| 4152 | } | ||
| 4153 | } | ||
| 4154 | |||
| 4155 | /* Move past the register number and the inner group count. */ | ||
| 4156 | p += 2; | ||
| 4157 | break; | ||
| 4158 | |||
| 4159 | |||
| 4160 | /* \<digit> has been turned into a `duplicate' command which is | ||
| 4161 | followed by the numeric value of <digit> as the register number. */ | ||
| 4162 | case duplicate: | ||
| 4163 | { | ||
| 4164 | register const char *d2, *dend2; | ||
| 4165 | int regno = *p++; /* Get which register to match against. */ | ||
| 4166 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | ||
| 4167 | |||
| 4168 | /* Can't back reference a group which we've never matched. */ | ||
| 4169 | if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | ||
| 4170 | goto fail; | ||
| 4171 | |||
| 4172 | /* Where in input to try to start matching. */ | ||
| 4173 | d2 = regstart[regno]; | ||
| 4174 | |||
| 4175 | /* Where to stop matching; if both the place to start and | ||
| 4176 | the place to stop matching are in the same string, then | ||
| 4177 | set to the place to stop, otherwise, for now have to use | ||
| 4178 | the end of the first string. */ | ||
| 4179 | |||
| 4180 | dend2 = ((FIRST_STRING_P (regstart[regno]) | ||
| 4181 | == FIRST_STRING_P (regend[regno])) | ||
| 4182 | ? regend[regno] : end_match_1); | ||
| 4183 | for (;;) | ||
| 4184 | { | ||
| 4185 | /* If necessary, advance to next segment in register | ||
| 4186 | contents. */ | ||
| 4187 | while (d2 == dend2) | ||
| 4188 | { | ||
| 4189 | if (dend2 == end_match_2) break; | ||
| 4190 | if (dend2 == regend[regno]) break; | ||
| 4191 | |||
| 4192 | /* End of string1 => advance to string2. */ | ||
| 4193 | d2 = string2; | ||
| 4194 | dend2 = regend[regno]; | ||
| 4195 | } | ||
| 4196 | /* At end of register contents => success */ | ||
| 4197 | if (d2 == dend2) break; | ||
| 4198 | |||
| 4199 | /* If necessary, advance to next segment in data. */ | ||
| 4200 | PREFETCH (); | ||
| 4201 | |||
| 4202 | /* How many characters left in this segment to match. */ | ||
| 4203 | mcnt = dend - d; | ||
| 4204 | |||
| 4205 | /* Want how many consecutive characters we can match in | ||
| 4206 | one shot, so, if necessary, adjust the count. */ | ||
| 4207 | if (mcnt > dend2 - d2) | ||
| 4208 | mcnt = dend2 - d2; | ||
| 4209 | |||
| 4210 | /* Compare that many; failure if mismatch, else move | ||
| 4211 | past them. */ | ||
| 4212 | if (translate | ||
| 4213 | ? bcmp_translate (d, d2, mcnt, translate) | ||
| 4214 | : bcmp (d, d2, mcnt)) | ||
| 4215 | goto fail; | ||
| 4216 | d += mcnt, d2 += mcnt; | ||
| 4217 | |||
| 4218 | /* Do this because we've match some characters. */ | ||
| 4219 | SET_REGS_MATCHED (); | ||
| 4220 | } | ||
| 4221 | } | ||
| 4222 | break; | ||
| 4223 | |||
| 4224 | |||
| 4225 | /* begline matches the empty string at the beginning of the string | ||
| 4226 | (unless `not_bol' is set in `bufp'), and, if | ||
| 4227 | `newline_anchor' is set, after newlines. */ | ||
| 4228 | case begline: | ||
| 4229 | DEBUG_PRINT1 ("EXECUTING begline.\n"); | ||
| 4230 | |||
| 4231 | if (AT_STRINGS_BEG (d)) | ||
| 4232 | { | ||
| 4233 | if (!bufp->not_bol) break; | ||
| 4234 | } | ||
| 4235 | else if (d[-1] == '\n' && bufp->newline_anchor) | ||
| 4236 | { | ||
| 4237 | break; | ||
| 4238 | } | ||
| 4239 | /* In all other cases, we fail. */ | ||
| 4240 | goto fail; | ||
| 4241 | |||
| 4242 | |||
| 4243 | /* endline is the dual of begline. */ | ||
| 4244 | case endline: | ||
| 4245 | DEBUG_PRINT1 ("EXECUTING endline.\n"); | ||
| 4246 | |||
| 4247 | if (AT_STRINGS_END (d)) | ||
| 4248 | { | ||
| 4249 | if (!bufp->not_eol) break; | ||
| 4250 | } | ||
| 4251 | |||
| 4252 | /* We have to ``prefetch'' the next character. */ | ||
| 4253 | else if ((d == end1 ? *string2 : *d) == '\n' | ||
| 4254 | && bufp->newline_anchor) | ||
| 4255 | { | ||
| 4256 | break; | ||
| 4257 | } | ||
| 4258 | goto fail; | ||
| 4259 | |||
| 4260 | |||
| 4261 | /* Match at the very beginning of the data. */ | ||
| 4262 | case begbuf: | ||
| 4263 | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | ||
| 4264 | if (AT_STRINGS_BEG (d)) | ||
| 4265 | break; | ||
| 4266 | goto fail; | ||
| 4267 | |||
| 4268 | |||
| 4269 | /* Match at the very end of the data. */ | ||
| 4270 | case endbuf: | ||
| 4271 | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | ||
| 4272 | if (AT_STRINGS_END (d)) | ||
| 4273 | break; | ||
| 4274 | goto fail; | ||
| 4275 | |||
| 4276 | |||
| 4277 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It | ||
| 4278 | pushes NULL as the value for the string on the stack. Then | ||
| 4279 | `pop_failure_point' will keep the current value for the | ||
| 4280 | string, instead of restoring it. To see why, consider | ||
| 4281 | matching `foo\nbar' against `.*\n'. The .* matches the foo; | ||
| 4282 | then the . fails against the \n. But the next thing we want | ||
| 4283 | to do is match the \n against the \n; if we restored the | ||
| 4284 | string value, we would be back at the foo. | ||
| 4285 | |||
| 4286 | Because this is used only in specific cases, we don't need to | ||
| 4287 | check all the things that `on_failure_jump' does, to make | ||
| 4288 | sure the right things get saved on the stack. Hence we don't | ||
| 4289 | share its code. The only reason to push anything on the | ||
| 4290 | stack at all is that otherwise we would have to change | ||
| 4291 | `anychar's code to do something besides goto fail in this | ||
| 4292 | case; that seems worse than this. */ | ||
| 4293 | case on_failure_keep_string_jump: | ||
| 4294 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | ||
| 4295 | |||
| 4296 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
| 4297 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | ||
| 4298 | |||
| 4299 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2); | ||
| 4300 | break; | ||
| 4301 | |||
| 4302 | |||
| 4303 | /* Uses of on_failure_jump: | ||
| 4304 | |||
| 4305 | Each alternative starts with an on_failure_jump that points | ||
| 4306 | to the beginning of the next alternative. Each alternative | ||
| 4307 | except the last ends with a jump that in effect jumps past | ||
| 4308 | the rest of the alternatives. (They really jump to the | ||
| 4309 | ending jump of the following alternative, because tensioning | ||
| 4310 | these jumps is a hassle.) | ||
| 4311 | |||
| 4312 | Repeats start with an on_failure_jump that points past both | ||
| 4313 | the repetition text and either the following jump or | ||
| 4314 | pop_failure_jump back to this on_failure_jump. */ | ||
| 4315 | case on_failure_jump: | ||
| 4316 | on_failure: | ||
| 4317 | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | ||
| 4318 | |||
| 4319 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
| 4320 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | ||
| 4321 | |||
| 4322 | /* If this on_failure_jump comes right before a group (i.e., | ||
| 4323 | the original * applied to a group), save the information | ||
| 4324 | for that group and all inner ones, so that if we fail back | ||
| 4325 | to this point, the group's information will be correct. | ||
| 4326 | For example, in \(a*\)*\1, we need the preceding group, | ||
| 4327 | and in \(\(a*\)b*\)\2, we need the inner group. */ | ||
| 4328 | |||
| 4329 | /* We can't use `p' to check ahead because we push | ||
| 4330 | a failure point to `p + mcnt' after we do this. */ | ||
| 4331 | p1 = p; | ||
| 4332 | |||
| 4333 | /* We need to skip no_op's before we look for the | ||
| 4334 | start_memory in case this on_failure_jump is happening as | ||
| 4335 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | ||
| 4336 | against aba. */ | ||
| 4337 | while (p1 < pend && (re_opcode_t) *p1 == no_op) | ||
| 4338 | p1++; | ||
| 4339 | |||
| 4340 | if (p1 < pend && (re_opcode_t) *p1 == start_memory) | ||
| 4341 | { | ||
| 4342 | /* We have a new highest active register now. This will | ||
| 4343 | get reset at the start_memory we are about to get to, | ||
| 4344 | but we will have saved all the registers relevant to | ||
| 4345 | this repetition op, as described above. */ | ||
| 4346 | highest_active_reg = *(p1 + 1) + *(p1 + 2); | ||
| 4347 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | ||
| 4348 | lowest_active_reg = *(p1 + 1); | ||
| 4349 | } | ||
| 4350 | |||
| 4351 | DEBUG_PRINT1 (":\n"); | ||
| 4352 | PUSH_FAILURE_POINT (p + mcnt, d, -2); | ||
| 4353 | break; | ||
| 4354 | |||
| 4355 | |||
| 4356 | /* A smart repeat ends with `maybe_pop_jump'. | ||
| 4357 | We change it to either `pop_failure_jump' or `jump'. */ | ||
| 4358 | case maybe_pop_jump: | ||
| 4359 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
| 4360 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | ||
| 4361 | { | ||
| 4362 | register unsigned char *p2 = p; | ||
| 4363 | |||
| 4364 | /* Compare the beginning of the repeat with what in the | ||
| 4365 | pattern follows its end. If we can establish that there | ||
| 4366 | is nothing that they would both match, i.e., that we | ||
| 4367 | would have to backtrack because of (as in, e.g., `a*a') | ||
| 4368 | then we can change to pop_failure_jump, because we'll | ||
| 4369 | never have to backtrack. | ||
| 4370 | |||
| 4371 | This is not true in the case of alternatives: in | ||
| 4372 | `(a|ab)*' we do need to backtrack to the `ab' alternative | ||
| 4373 | (e.g., if the string was `ab'). But instead of trying to | ||
| 4374 | detect that here, the alternative has put on a dummy | ||
| 4375 | failure point which is what we will end up popping. */ | ||
| 4376 | |||
| 4377 | /* Skip over open/close-group commands. | ||
| 4378 | If what follows this loop is a ...+ construct, | ||
| 4379 | look at what begins its body, since we will have to | ||
| 4380 | match at least one of that. */ | ||
| 4381 | while (1) | ||
| 4382 | { | ||
| 4383 | if (p2 + 2 < pend | ||
| 4384 | && ((re_opcode_t) *p2 == stop_memory | ||
| 4385 | || (re_opcode_t) *p2 == start_memory)) | ||
| 4386 | p2 += 3; | ||
| 4387 | else if (p2 + 6 < pend | ||
| 4388 | && (re_opcode_t) *p2 == dummy_failure_jump) | ||
| 4389 | p2 += 6; | ||
| 4390 | else | ||
| 4391 | break; | ||
| 4392 | } | ||
| 4393 | |||
| 4394 | p1 = p + mcnt; | ||
| 4395 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | ||
| 4396 | to the `maybe_finalize_jump' of this case. Examine what | ||
| 4397 | follows. */ | ||
| 4398 | |||
| 4399 | /* If we're at the end of the pattern, we can change. */ | ||
| 4400 | if (p2 == pend) | ||
| 4401 | { | ||
| 4402 | /* Consider what happens when matching ":\(.*\)" | ||
| 4403 | against ":/". I don't really understand this code | ||
| 4404 | yet. */ | ||
| 4405 | p[-3] = (unsigned char) pop_failure_jump; | ||
| 4406 | DEBUG_PRINT1 | ||
| 4407 | (" End of pattern: change to `pop_failure_jump'.\n"); | ||
| 4408 | } | ||
| 4409 | |||
| 4410 | else if ((re_opcode_t) *p2 == exactn | ||
| 4411 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | ||
| 4412 | { | ||
| 4413 | register unsigned char c | ||
| 4414 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; | ||
| 4415 | |||
| 4416 | if ((re_opcode_t) p1[3] == exactn && p1[5] != c) | ||
| 4417 | { | ||
| 4418 | p[-3] = (unsigned char) pop_failure_jump; | ||
| 4419 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | ||
| 4420 | c, p1[5]); | ||
| 4421 | } | ||
| 4422 | |||
| 4423 | else if ((re_opcode_t) p1[3] == charset | ||
| 4424 | || (re_opcode_t) p1[3] == charset_not) | ||
| 4425 | { | ||
| 4426 | int not = (re_opcode_t) p1[3] == charset_not; | ||
| 4427 | |||
| 4428 | if (c < (unsigned char) (p1[4] * BYTEWIDTH) | ||
| 4429 | && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | ||
| 4430 | not = !not; | ||
| 4431 | |||
| 4432 | /* `not' is equal to 1 if c would match, which means | ||
| 4433 | that we can't change to pop_failure_jump. */ | ||
| 4434 | if (!not) | ||
| 4435 | { | ||
| 4436 | p[-3] = (unsigned char) pop_failure_jump; | ||
| 4437 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | ||
| 4438 | } | ||
| 4439 | } | ||
| 4440 | } | ||
| 4441 | else if ((re_opcode_t) *p2 == charset) | ||
| 4442 | { | ||
| 4443 | #ifdef DEBUG | ||
| 4444 | register unsigned char c | ||
| 4445 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; | ||
| 4446 | #endif | ||
| 4447 | |||
| 4448 | if ((re_opcode_t) p1[3] == exactn | ||
| 4449 | && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4] | ||
| 4450 | && (p2[1 + p1[4] / BYTEWIDTH] | ||
| 4451 | & (1 << (p1[4] % BYTEWIDTH))))) | ||
| 4452 | { | ||
| 4453 | p[-3] = (unsigned char) pop_failure_jump; | ||
| 4454 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | ||
| 4455 | c, p1[5]); | ||
| 4456 | } | ||
| 4457 | |||
| 4458 | else if ((re_opcode_t) p1[3] == charset_not) | ||
| 4459 | { | ||
| 4460 | int idx; | ||
| 4461 | /* We win if the charset_not inside the loop | ||
| 4462 | lists every character listed in the charset after. */ | ||
| 4463 | for (idx = 0; idx < (int) p2[1]; idx++) | ||
| 4464 | if (! (p2[2 + idx] == 0 | ||
| 4465 | || (idx < (int) p1[4] | ||
| 4466 | && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | ||
| 4467 | break; | ||
| 4468 | |||
| 4469 | if (idx == p2[1]) | ||
| 4470 | { | ||
| 4471 | p[-3] = (unsigned char) pop_failure_jump; | ||
| 4472 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | ||
| 4473 | } | ||
| 4474 | } | ||
| 4475 | else if ((re_opcode_t) p1[3] == charset) | ||
| 4476 | { | ||
| 4477 | int idx; | ||
| 4478 | /* We win if the charset inside the loop | ||
| 4479 | has no overlap with the one after the loop. */ | ||
| 4480 | for (idx = 0; | ||
| 4481 | idx < (int) p2[1] && idx < (int) p1[4]; | ||
| 4482 | idx++) | ||
| 4483 | if ((p2[2 + idx] & p1[5 + idx]) != 0) | ||
| 4484 | break; | ||
| 4485 | |||
| 4486 | if (idx == p2[1] || idx == p1[4]) | ||
| 4487 | { | ||
| 4488 | p[-3] = (unsigned char) pop_failure_jump; | ||
| 4489 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | ||
| 4490 | } | ||
| 4491 | } | ||
| 4492 | } | ||
| 4493 | } | ||
| 4494 | p -= 2; /* Point at relative address again. */ | ||
| 4495 | if ((re_opcode_t) p[-1] != pop_failure_jump) | ||
| 4496 | { | ||
| 4497 | p[-1] = (unsigned char) jump; | ||
| 4498 | DEBUG_PRINT1 (" Match => jump.\n"); | ||
| 4499 | goto unconditional_jump; | ||
| 4500 | } | ||
| 4501 | /* Note fall through. */ | ||
| 4502 | |||
| 4503 | |||
| 4504 | /* The end of a simple repeat has a pop_failure_jump back to | ||
| 4505 | its matching on_failure_jump, where the latter will push a | ||
| 4506 | failure point. The pop_failure_jump takes off failure | ||
| 4507 | points put on by this pop_failure_jump's matching | ||
| 4508 | on_failure_jump; we got through the pattern to here from the | ||
| 4509 | matching on_failure_jump, so didn't fail. */ | ||
| 4510 | case pop_failure_jump: | ||
| 4511 | { | ||
| 4512 | /* We need to pass separate storage for the lowest and | ||
| 4513 | highest registers, even though we don't care about the | ||
| 4514 | actual values. Otherwise, we will restore only one | ||
| 4515 | register from the stack, since lowest will == highest in | ||
| 4516 | `pop_failure_point'. */ | ||
| 4517 | unsigned dummy_low_reg, dummy_high_reg; | ||
| 4518 | unsigned char *pdummy; | ||
| 4519 | const char *sdummy; | ||
| 4520 | |||
| 4521 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | ||
| 4522 | POP_FAILURE_POINT (sdummy, pdummy, | ||
| 4523 | dummy_low_reg, dummy_high_reg, | ||
| 4524 | reg_dummy, reg_dummy, reg_info_dummy); | ||
| 4525 | } | ||
| 4526 | /* Note fall through. */ | ||
| 4527 | |||
| 4528 | |||
| 4529 | /* Unconditionally jump (without popping any failure points). */ | ||
| 4530 | case jump: | ||
| 4531 | unconditional_jump: | ||
| 4532 | EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | ||
| 4533 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | ||
| 4534 | p += mcnt; /* Do the jump. */ | ||
| 4535 | DEBUG_PRINT2 ("(to 0x%x).\n", p); | ||
| 4536 | break; | ||
| 4537 | |||
| 4538 | |||
| 4539 | /* We need this opcode so we can detect where alternatives end | ||
| 4540 | in `group_match_null_string_p' et al. */ | ||
| 4541 | case jump_past_alt: | ||
| 4542 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | ||
| 4543 | goto unconditional_jump; | ||
| 4544 | |||
| 4545 | |||
| 4546 | /* Normally, the on_failure_jump pushes a failure point, which | ||
| 4547 | then gets popped at pop_failure_jump. We will end up at | ||
| 4548 | pop_failure_jump, also, and with a pattern of, say, `a+', we | ||
| 4549 | are skipping over the on_failure_jump, so we have to push | ||
| 4550 | something meaningless for pop_failure_jump to pop. */ | ||
| 4551 | case dummy_failure_jump: | ||
| 4552 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | ||
| 4553 | /* It doesn't matter what we push for the string here. What | ||
| 4554 | the code at `fail' tests is the value for the pattern. */ | ||
| 4555 | PUSH_FAILURE_POINT (0, 0, -2); | ||
| 4556 | goto unconditional_jump; | ||
| 4557 | |||
| 4558 | |||
| 4559 | /* At the end of an alternative, we need to push a dummy failure | ||
| 4560 | point in case we are followed by a `pop_failure_jump', because | ||
| 4561 | we don't want the failure point for the alternative to be | ||
| 4562 | popped. For example, matching `(a|ab)*' against `aab' | ||
| 4563 | requires that we match the `ab' alternative. */ | ||
| 4564 | case push_dummy_failure: | ||
| 4565 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | ||
| 4566 | /* See comments just above at `dummy_failure_jump' about the | ||
| 4567 | two zeroes. */ | ||
| 4568 | PUSH_FAILURE_POINT (0, 0, -2); | ||
| 4569 | break; | ||
| 4570 | |||
| 4571 | /* Have to succeed matching what follows at least n times. | ||
| 4572 | After that, handle like `on_failure_jump'. */ | ||
| 4573 | case succeed_n: | ||
| 4574 | EXTRACT_NUMBER (mcnt, p + 2); | ||
| 4575 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | ||
| 4576 | |||
| 4577 | assert (mcnt >= 0); | ||
| 4578 | /* Originally, this is how many times we HAVE to succeed. */ | ||
| 4579 | if (mcnt > 0) | ||
| 4580 | { | ||
| 4581 | mcnt--; | ||
| 4582 | p += 2; | ||
| 4583 | STORE_NUMBER_AND_INCR (p, mcnt); | ||
| 4584 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | ||
| 4585 | } | ||
| 4586 | else if (mcnt == 0) | ||
| 4587 | { | ||
| 4588 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | ||
| 4589 | p[2] = (unsigned char) no_op; | ||
| 4590 | p[3] = (unsigned char) no_op; | ||
| 4591 | goto on_failure; | ||
| 4592 | } | ||
| 4593 | break; | ||
| 4594 | |||
| 4595 | case jump_n: | ||
| 4596 | EXTRACT_NUMBER (mcnt, p + 2); | ||
| 4597 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | ||
| 4598 | |||
| 4599 | /* Originally, this is how many times we CAN jump. */ | ||
| 4600 | if (mcnt) | ||
| 4601 | { | ||
| 4602 | mcnt--; | ||
| 4603 | STORE_NUMBER (p + 2, mcnt); | ||
| 4604 | goto unconditional_jump; | ||
| 4605 | } | ||
| 4606 | /* If don't have to jump any more, skip over the rest of command. */ | ||
| 4607 | else | ||
| 4608 | p += 4; | ||
| 4609 | break; | ||
| 4610 | |||
| 4611 | case set_number_at: | ||
| 4612 | { | ||
| 4613 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | ||
| 4614 | |||
| 4615 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
| 4616 | p1 = p + mcnt; | ||
| 4617 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
| 4618 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | ||
| 4619 | STORE_NUMBER (p1, mcnt); | ||
| 4620 | break; | ||
| 4621 | } | ||
| 4622 | |||
| 4623 | case wordbound: | ||
| 4624 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | ||
| 4625 | if (AT_WORD_BOUNDARY (d)) | ||
| 4626 | break; | ||
| 4627 | goto fail; | ||
| 4628 | |||
| 4629 | case notwordbound: | ||
| 4630 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | ||
| 4631 | if (AT_WORD_BOUNDARY (d)) | ||
| 4632 | goto fail; | ||
| 4633 | break; | ||
| 4634 | |||
| 4635 | case wordbeg: | ||
| 4636 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | ||
| 4637 | if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | ||
| 4638 | break; | ||
| 4639 | goto fail; | ||
| 4640 | |||
| 4641 | case wordend: | ||
| 4642 | DEBUG_PRINT1 ("EXECUTING wordend.\n"); | ||
| 4643 | if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | ||
| 4644 | && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) | ||
| 4645 | break; | ||
| 4646 | goto fail; | ||
| 4647 | |||
| 4648 | #ifdef emacs | ||
| 4649 | case before_dot: | ||
| 4650 | DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | ||
| 4651 | if (PTR_CHAR_POS ((unsigned char *) d) >= point) | ||
| 4652 | goto fail; | ||
| 4653 | break; | ||
| 4654 | |||
| 4655 | case at_dot: | ||
| 4656 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | ||
| 4657 | if (PTR_CHAR_POS ((unsigned char *) d) != point) | ||
| 4658 | goto fail; | ||
| 4659 | break; | ||
| 4660 | |||
| 4661 | case after_dot: | ||
| 4662 | DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | ||
| 4663 | if (PTR_CHAR_POS ((unsigned char *) d) <= point) | ||
| 4664 | goto fail; | ||
| 4665 | break; | ||
| 4666 | #if 0 /* not emacs19 */ | ||
| 4667 | case at_dot: | ||
| 4668 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | ||
| 4669 | if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point) | ||
| 4670 | goto fail; | ||
| 4671 | break; | ||
| 4672 | #endif /* not emacs19 */ | ||
| 4673 | |||
| 4674 | case syntaxspec: | ||
| 4675 | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | ||
| 4676 | mcnt = *p++; | ||
| 4677 | goto matchsyntax; | ||
| 4678 | |||
| 4679 | case wordchar: | ||
| 4680 | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | ||
| 4681 | mcnt = (int) Sword; | ||
| 4682 | matchsyntax: | ||
| 4683 | PREFETCH (); | ||
| 4684 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ | ||
| 4685 | d++; | ||
| 4686 | if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) | ||
| 4687 | goto fail; | ||
| 4688 | SET_REGS_MATCHED (); | ||
| 4689 | break; | ||
| 4690 | |||
| 4691 | case notsyntaxspec: | ||
| 4692 | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | ||
| 4693 | mcnt = *p++; | ||
| 4694 | goto matchnotsyntax; | ||
| 4695 | |||
| 4696 | case notwordchar: | ||
| 4697 | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | ||
| 4698 | mcnt = (int) Sword; | ||
| 4699 | matchnotsyntax: | ||
| 4700 | PREFETCH (); | ||
| 4701 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ | ||
| 4702 | d++; | ||
| 4703 | if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) | ||
| 4704 | goto fail; | ||
| 4705 | SET_REGS_MATCHED (); | ||
| 4706 | break; | ||
| 4707 | |||
| 4708 | #else /* not emacs */ | ||
| 4709 | case wordchar: | ||
| 4710 | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | ||
| 4711 | PREFETCH (); | ||
| 4712 | if (!WORDCHAR_P (d)) | ||
| 4713 | goto fail; | ||
| 4714 | SET_REGS_MATCHED (); | ||
| 4715 | d++; | ||
| 4716 | break; | ||
| 4717 | |||
| 4718 | case notwordchar: | ||
| 4719 | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | ||
| 4720 | PREFETCH (); | ||
| 4721 | if (WORDCHAR_P (d)) | ||
| 4722 | goto fail; | ||
| 4723 | SET_REGS_MATCHED (); | ||
| 4724 | d++; | ||
| 4725 | break; | ||
| 4726 | #endif /* not emacs */ | ||
| 4727 | |||
| 4728 | default: | ||
| 4729 | abort (); | ||
| 4730 | } | ||
| 4731 | continue; /* Successfully executed one pattern command; keep going. */ | ||
| 4732 | |||
| 4733 | |||
| 4734 | /* We goto here if a matching operation fails. */ | ||
| 4735 | fail: | ||
| 4736 | if (!FAIL_STACK_EMPTY ()) | ||
| 4737 | { /* A restart point is known. Restore to that state. */ | ||
| 4738 | DEBUG_PRINT1 ("\nFAIL:\n"); | ||
| 4739 | POP_FAILURE_POINT (d, p, | ||
| 4740 | lowest_active_reg, highest_active_reg, | ||
| 4741 | regstart, regend, reg_info); | ||
| 4742 | |||
| 4743 | /* If this failure point is a dummy, try the next one. */ | ||
| 4744 | if (!p) | ||
| 4745 | goto fail; | ||
| 4746 | |||
| 4747 | /* If we failed to the end of the pattern, don't examine *p. */ | ||
| 4748 | assert (p <= pend); | ||
| 4749 | if (p < pend) | ||
| 4750 | { | ||
| 4751 | boolean is_a_jump_n = false; | ||
| 4752 | |||
| 4753 | /* If failed to a backwards jump that's part of a repetition | ||
| 4754 | loop, need to pop this failure point and use the next one. */ | ||
| 4755 | switch ((re_opcode_t) *p) | ||
| 4756 | { | ||
| 4757 | case jump_n: | ||
| 4758 | is_a_jump_n = true; | ||
| 4759 | case maybe_pop_jump: | ||
| 4760 | case pop_failure_jump: | ||
| 4761 | case jump: | ||
| 4762 | p1 = p + 1; | ||
| 4763 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 4764 | p1 += mcnt; | ||
| 4765 | |||
| 4766 | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | ||
| 4767 | || (!is_a_jump_n | ||
| 4768 | && (re_opcode_t) *p1 == on_failure_jump)) | ||
| 4769 | goto fail; | ||
| 4770 | break; | ||
| 4771 | default: | ||
| 4772 | /* do nothing */ ; | ||
| 4773 | } | ||
| 4774 | } | ||
| 4775 | |||
| 4776 | if (d >= string1 && d <= end1) | ||
| 4777 | dend = end_match_1; | ||
| 4778 | } | ||
| 4779 | else | ||
| 4780 | break; /* Matching at this starting point really fails. */ | ||
| 4781 | } /* for (;;) */ | ||
| 4782 | |||
| 4783 | if (best_regs_set) | ||
| 4784 | goto restore_best_regs; | ||
| 4785 | |||
| 4786 | FREE_VARIABLES (); | ||
| 4787 | |||
| 4788 | return -1; /* Failure to match. */ | ||
| 4789 | } /* re_match_2 */ | ||
| 4790 | |||
| 4791 | /* Subroutine definitions for re_match_2. */ | ||
| 4792 | |||
| 4793 | |||
| 4794 | /* We are passed P pointing to a register number after a start_memory. | ||
| 4795 | |||
| 4796 | Return true if the pattern up to the corresponding stop_memory can | ||
| 4797 | match the empty string, and false otherwise. | ||
| 4798 | |||
| 4799 | If we find the matching stop_memory, sets P to point to one past its number. | ||
| 4800 | Otherwise, sets P to an undefined byte less than or equal to END. | ||
| 4801 | |||
| 4802 | We don't handle duplicates properly (yet). */ | ||
| 4803 | |||
| 4804 | static boolean | ||
| 4805 | group_match_null_string_p (p, end, reg_info) | ||
| 4806 | unsigned char **p, *end; | ||
| 4807 | register_info_type *reg_info; | ||
| 4808 | { | ||
| 4809 | int mcnt; | ||
| 4810 | /* Point to after the args to the start_memory. */ | ||
| 4811 | unsigned char *p1 = *p + 2; | ||
| 4812 | |||
| 4813 | while (p1 < end) | ||
| 4814 | { | ||
| 4815 | /* Skip over opcodes that can match nothing, and return true or | ||
| 4816 | false, as appropriate, when we get to one that can't, or to the | ||
| 4817 | matching stop_memory. */ | ||
| 4818 | |||
| 4819 | switch ((re_opcode_t) *p1) | ||
| 4820 | { | ||
| 4821 | /* Could be either a loop or a series of alternatives. */ | ||
| 4822 | case on_failure_jump: | ||
| 4823 | p1++; | ||
| 4824 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 4825 | |||
| 4826 | /* If the next operation is not a jump backwards in the | ||
| 4827 | pattern. */ | ||
| 4828 | |||
| 4829 | if (mcnt >= 0) | ||
| 4830 | { | ||
| 4831 | /* Go through the on_failure_jumps of the alternatives, | ||
| 4832 | seeing if any of the alternatives cannot match nothing. | ||
| 4833 | The last alternative starts with only a jump, | ||
| 4834 | whereas the rest start with on_failure_jump and end | ||
| 4835 | with a jump, e.g., here is the pattern for `a|b|c': | ||
| 4836 | |||
| 4837 | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | ||
| 4838 | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | ||
| 4839 | /exactn/1/c | ||
| 4840 | |||
| 4841 | So, we have to first go through the first (n-1) | ||
| 4842 | alternatives and then deal with the last one separately. */ | ||
| 4843 | |||
| 4844 | |||
| 4845 | /* Deal with the first (n-1) alternatives, which start | ||
| 4846 | with an on_failure_jump (see above) that jumps to right | ||
| 4847 | past a jump_past_alt. */ | ||
| 4848 | |||
| 4849 | while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | ||
| 4850 | { | ||
| 4851 | /* `mcnt' holds how many bytes long the alternative | ||
| 4852 | is, including the ending `jump_past_alt' and | ||
| 4853 | its number. */ | ||
| 4854 | |||
| 4855 | if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | ||
| 4856 | reg_info)) | ||
| 4857 | return false; | ||
| 4858 | |||
| 4859 | /* Move to right after this alternative, including the | ||
| 4860 | jump_past_alt. */ | ||
| 4861 | p1 += mcnt; | ||
| 4862 | |||
| 4863 | /* Break if it's the beginning of an n-th alternative | ||
| 4864 | that doesn't begin with an on_failure_jump. */ | ||
| 4865 | if ((re_opcode_t) *p1 != on_failure_jump) | ||
| 4866 | break; | ||
| 4867 | |||
| 4868 | /* Still have to check that it's not an n-th | ||
| 4869 | alternative that starts with an on_failure_jump. */ | ||
| 4870 | p1++; | ||
| 4871 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 4872 | if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | ||
| 4873 | { | ||
| 4874 | /* Get to the beginning of the n-th alternative. */ | ||
| 4875 | p1 -= 3; | ||
| 4876 | break; | ||
| 4877 | } | ||
| 4878 | } | ||
| 4879 | |||
| 4880 | /* Deal with the last alternative: go back and get number | ||
| 4881 | of the `jump_past_alt' just before it. `mcnt' contains | ||
| 4882 | the length of the alternative. */ | ||
| 4883 | EXTRACT_NUMBER (mcnt, p1 - 2); | ||
| 4884 | |||
| 4885 | if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | ||
| 4886 | return false; | ||
| 4887 | |||
| 4888 | p1 += mcnt; /* Get past the n-th alternative. */ | ||
| 4889 | } /* if mcnt > 0 */ | ||
| 4890 | break; | ||
| 4891 | |||
| 4892 | |||
| 4893 | case stop_memory: | ||
| 4894 | assert (p1[1] == **p); | ||
| 4895 | *p = p1 + 2; | ||
| 4896 | return true; | ||
| 4897 | |||
| 4898 | |||
| 4899 | default: | ||
| 4900 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | ||
| 4901 | return false; | ||
| 4902 | } | ||
| 4903 | } /* while p1 < end */ | ||
| 4904 | |||
| 4905 | return false; | ||
| 4906 | } /* group_match_null_string_p */ | ||
| 4907 | |||
| 4908 | |||
| 4909 | /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | ||
| 4910 | It expects P to be the first byte of a single alternative and END one | ||
| 4911 | byte past the last. The alternative can contain groups. */ | ||
| 4912 | |||
| 4913 | static boolean | ||
| 4914 | alt_match_null_string_p (p, end, reg_info) | ||
| 4915 | unsigned char *p, *end; | ||
| 4916 | register_info_type *reg_info; | ||
| 4917 | { | ||
| 4918 | int mcnt; | ||
| 4919 | unsigned char *p1 = p; | ||
| 4920 | |||
| 4921 | while (p1 < end) | ||
| 4922 | { | ||
| 4923 | /* Skip over opcodes that can match nothing, and break when we get | ||
| 4924 | to one that can't. */ | ||
| 4925 | |||
| 4926 | switch ((re_opcode_t) *p1) | ||
| 4927 | { | ||
| 4928 | /* It's a loop. */ | ||
| 4929 | case on_failure_jump: | ||
| 4930 | p1++; | ||
| 4931 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 4932 | p1 += mcnt; | ||
| 4933 | break; | ||
| 4934 | |||
| 4935 | default: | ||
| 4936 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | ||
| 4937 | return false; | ||
| 4938 | } | ||
| 4939 | } /* while p1 < end */ | ||
| 4940 | |||
| 4941 | return true; | ||
| 4942 | } /* alt_match_null_string_p */ | ||
| 4943 | |||
| 4944 | |||
| 4945 | /* Deals with the ops common to group_match_null_string_p and | ||
| 4946 | alt_match_null_string_p. | ||
| 4947 | |||
| 4948 | Sets P to one after the op and its arguments, if any. */ | ||
| 4949 | |||
| 4950 | static boolean | ||
| 4951 | common_op_match_null_string_p (p, end, reg_info) | ||
| 4952 | unsigned char **p, *end; | ||
| 4953 | register_info_type *reg_info; | ||
| 4954 | { | ||
| 4955 | int mcnt; | ||
| 4956 | boolean ret; | ||
| 4957 | int reg_no; | ||
| 4958 | unsigned char *p1 = *p; | ||
| 4959 | |||
| 4960 | switch ((re_opcode_t) *p1++) | ||
| 4961 | { | ||
| 4962 | case no_op: | ||
| 4963 | case begline: | ||
| 4964 | case endline: | ||
| 4965 | case begbuf: | ||
| 4966 | case endbuf: | ||
| 4967 | case wordbeg: | ||
| 4968 | case wordend: | ||
| 4969 | case wordbound: | ||
| 4970 | case notwordbound: | ||
| 4971 | #ifdef emacs | ||
| 4972 | case before_dot: | ||
| 4973 | case at_dot: | ||
| 4974 | case after_dot: | ||
| 4975 | #endif | ||
| 4976 | break; | ||
| 4977 | |||
| 4978 | case start_memory: | ||
| 4979 | reg_no = *p1; | ||
| 4980 | assert (reg_no > 0 && reg_no <= MAX_REGNUM); | ||
| 4981 | ret = group_match_null_string_p (&p1, end, reg_info); | ||
| 4982 | |||
| 4983 | /* Have to set this here in case we're checking a group which | ||
| 4984 | contains a group and a back reference to it. */ | ||
| 4985 | |||
| 4986 | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | ||
| 4987 | REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | ||
| 4988 | |||
| 4989 | if (!ret) | ||
| 4990 | return false; | ||
| 4991 | break; | ||
| 4992 | |||
| 4993 | /* If this is an optimized succeed_n for zero times, make the jump. */ | ||
| 4994 | case jump: | ||
| 4995 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 4996 | if (mcnt >= 0) | ||
| 4997 | p1 += mcnt; | ||
| 4998 | else | ||
| 4999 | return false; | ||
| 5000 | break; | ||
| 5001 | |||
| 5002 | case succeed_n: | ||
| 5003 | /* Get to the number of times to succeed. */ | ||
| 5004 | p1 += 2; | ||
| 5005 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 5006 | |||
| 5007 | if (mcnt == 0) | ||
| 5008 | { | ||
| 5009 | p1 -= 4; | ||
| 5010 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
| 5011 | p1 += mcnt; | ||
| 5012 | } | ||
| 5013 | else | ||
| 5014 | return false; | ||
| 5015 | break; | ||
| 5016 | |||
| 5017 | case duplicate: | ||
| 5018 | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | ||
| 5019 | return false; | ||
| 5020 | break; | ||
| 5021 | |||
| 5022 | case set_number_at: | ||
| 5023 | p1 += 4; | ||
| 5024 | |||
| 5025 | default: | ||
| 5026 | /* All other opcodes mean we cannot match the empty string. */ | ||
| 5027 | return false; | ||
| 5028 | } | ||
| 5029 | |||
| 5030 | *p = p1; | ||
| 5031 | return true; | ||
| 5032 | } /* common_op_match_null_string_p */ | ||
| 5033 | |||
| 5034 | |||
| 5035 | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | ||
| 5036 | bytes; nonzero otherwise. */ | ||
| 5037 | |||
| 5038 | static int | ||
| 5039 | bcmp_translate (s1, s2, len, translate) | ||
| 5040 | unsigned char *s1, *s2; | ||
| 5041 | register int len; | ||
| 5042 | char *translate; | ||
| 5043 | { | ||
| 5044 | register unsigned char *p1 = s1, *p2 = s2; | ||
| 5045 | while (len) | ||
| 5046 | { | ||
| 5047 | if (translate[*p1++] != translate[*p2++]) return 1; | ||
| 5048 | len--; | ||
| 5049 | } | ||
| 5050 | return 0; | ||
| 5051 | } | ||
| 5052 | |||
| 5053 | /* Entry points for GNU code. */ | ||
| 5054 | |||
| 5055 | /* re_compile_pattern is the GNU regular expression compiler: it | ||
| 5056 | compiles PATTERN (of length SIZE) and puts the result in BUFP. | ||
| 5057 | Returns 0 if the pattern was valid, otherwise an error string. | ||
| 5058 | |||
| 5059 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | ||
| 5060 | are set in BUFP on entry. | ||
| 5061 | |||
| 5062 | We call regex_compile to do the actual compilation. */ | ||
| 5063 | |||
| 5064 | const char * | ||
| 5065 | re_compile_pattern (pattern, length, bufp) | ||
| 5066 | const char *pattern; | ||
| 5067 | int length; | ||
| 5068 | struct re_pattern_buffer *bufp; | ||
| 5069 | { | ||
| 5070 | reg_errcode_t ret; | ||
| 5071 | |||
| 5072 | /* GNU code is written to assume at least RE_NREGS registers will be set | ||
| 5073 | (and at least one extra will be -1). */ | ||
| 5074 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
| 5075 | |||
| 5076 | /* And GNU code determines whether or not to get register information | ||
| 5077 | by passing null for the REGS argument to re_match, etc., not by | ||
| 5078 | setting no_sub. */ | ||
| 5079 | bufp->no_sub = 0; | ||
| 5080 | |||
| 5081 | /* Match anchors at newline. */ | ||
| 5082 | bufp->newline_anchor = 1; | ||
| 5083 | |||
| 5084 | ret = regex_compile (pattern, length, re_syntax_options, bufp); | ||
| 5085 | |||
| 5086 | if (!ret) | ||
| 5087 | return NULL; | ||
| 5088 | return gettext (re_error_msgid[(int) ret]); | ||
| 5089 | } | ||
| 5090 | |||
| 5091 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
| 5092 | them unless specifically requested. */ | ||
| 5093 | |||
| 5094 | #ifdef _REGEX_RE_COMP | ||
| 5095 | |||
| 5096 | /* BSD has one and only one pattern buffer. */ | ||
| 5097 | static struct re_pattern_buffer re_comp_buf; | ||
| 5098 | |||
| 5099 | char * | ||
| 5100 | re_comp (s) | ||
| 5101 | const char *s; | ||
| 5102 | { | ||
| 5103 | reg_errcode_t ret; | ||
| 5104 | |||
| 5105 | if (!s) | ||
| 5106 | { | ||
| 5107 | if (!re_comp_buf.buffer) | ||
| 5108 | return gettext ("No previous regular expression"); | ||
| 5109 | return 0; | ||
| 5110 | } | ||
| 5111 | |||
| 5112 | if (!re_comp_buf.buffer) | ||
| 5113 | { | ||
| 5114 | re_comp_buf.buffer = (unsigned char *) malloc (200); | ||
| 5115 | if (re_comp_buf.buffer == NULL) | ||
| 5116 | return gettext (re_error_msgid[(int) REG_ESPACE]); | ||
| 5117 | re_comp_buf.allocated = 200; | ||
| 5118 | |||
| 5119 | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); | ||
| 5120 | if (re_comp_buf.fastmap == NULL) | ||
| 5121 | return gettext (re_error_msgid[(int) REG_ESPACE]); | ||
| 5122 | } | ||
| 5123 | |||
| 5124 | /* Since `re_exec' always passes NULL for the `regs' argument, we | ||
| 5125 | don't need to initialize the pattern buffer fields which affect it. */ | ||
| 5126 | |||
| 5127 | /* Match anchors at newlines. */ | ||
| 5128 | re_comp_buf.newline_anchor = 1; | ||
| 5129 | |||
| 5130 | ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | ||
| 5131 | |||
| 5132 | if (!ret) | ||
| 5133 | return NULL; | ||
| 5134 | |||
| 5135 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | ||
| 5136 | return (char *) gettext (re_error_msgid[(int) ret]); | ||
| 5137 | } | ||
| 5138 | |||
| 5139 | |||
| 5140 | int | ||
| 5141 | re_exec (s) | ||
| 5142 | const char *s; | ||
| 5143 | { | ||
| 5144 | const int len = strlen (s); | ||
| 5145 | return | ||
| 5146 | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | ||
| 5147 | } | ||
| 5148 | #endif /* _REGEX_RE_COMP */ | ||
| 5149 | |||
| 5150 | /* POSIX.2 functions. Don't define these for Emacs. */ | ||
| 5151 | |||
| 5152 | #ifndef emacs | ||
| 5153 | |||
| 5154 | /* regcomp takes a regular expression as a string and compiles it. | ||
| 5155 | |||
| 5156 | PREG is a regex_t *. We do not expect any fields to be initialized, | ||
| 5157 | since POSIX says we shouldn't. Thus, we set | ||
| 5158 | |||
| 5159 | `buffer' to the compiled pattern; | ||
| 5160 | `used' to the length of the compiled pattern; | ||
| 5161 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | ||
| 5162 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | ||
| 5163 | RE_SYNTAX_POSIX_BASIC; | ||
| 5164 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | ||
| 5165 | `fastmap' and `fastmap_accurate' to zero; | ||
| 5166 | `re_nsub' to the number of subexpressions in PATTERN. | ||
| 5167 | |||
| 5168 | PATTERN is the address of the pattern string. | ||
| 5169 | |||
| 5170 | CFLAGS is a series of bits which affect compilation. | ||
| 5171 | |||
| 5172 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | ||
| 5173 | use POSIX basic syntax. | ||
| 5174 | |||
| 5175 | If REG_NEWLINE is set, then . and [^...] don't match newline. | ||
| 5176 | Also, regexec will try a match beginning after every newline. | ||
| 5177 | |||
| 5178 | If REG_ICASE is set, then we considers upper- and lowercase | ||
| 5179 | versions of letters to be equivalent when matching. | ||
| 5180 | |||
| 5181 | If REG_NOSUB is set, then when PREG is passed to regexec, that | ||
| 5182 | routine will report only success or failure, and nothing about the | ||
| 5183 | registers. | ||
| 5184 | |||
| 5185 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | ||
| 5186 | the return codes and their meanings.) */ | ||
| 5187 | |||
| 5188 | int | ||
| 5189 | regcomp (preg, pattern, cflags) | ||
| 5190 | regex_t *preg; | ||
| 5191 | const char *pattern; | ||
| 5192 | int cflags; | ||
| 5193 | { | ||
| 5194 | reg_errcode_t ret; | ||
| 5195 | unsigned syntax | ||
| 5196 | = (cflags & REG_EXTENDED) ? | ||
| 5197 | RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; | ||
| 5198 | |||
| 5199 | /* regex_compile will allocate the space for the compiled pattern. */ | ||
| 5200 | preg->buffer = 0; | ||
| 5201 | preg->allocated = 0; | ||
| 5202 | preg->used = 0; | ||
| 5203 | |||
| 5204 | /* Don't bother to use a fastmap when searching. This simplifies the | ||
| 5205 | REG_NEWLINE case: if we used a fastmap, we'd have to put all the | ||
| 5206 | characters after newlines into the fastmap. This way, we just try | ||
| 5207 | every character. */ | ||
| 5208 | preg->fastmap = 0; | ||
| 5209 | |||
| 5210 | if (cflags & REG_ICASE) | ||
| 5211 | { | ||
| 5212 | unsigned i; | ||
| 5213 | |||
| 5214 | preg->translate = (char *) malloc (CHAR_SET_SIZE); | ||
| 5215 | if (preg->translate == NULL) | ||
| 5216 | return (int) REG_ESPACE; | ||
| 5217 | |||
| 5218 | /* Map uppercase characters to corresponding lowercase ones. */ | ||
| 5219 | for (i = 0; i < CHAR_SET_SIZE; i++) | ||
| 5220 | preg->translate[i] = ISUPPER (i) ? tolower (i) : i; | ||
| 5221 | } | ||
| 5222 | else | ||
| 5223 | preg->translate = NULL; | ||
| 5224 | |||
| 5225 | /* If REG_NEWLINE is set, newlines are treated differently. */ | ||
| 5226 | if (cflags & REG_NEWLINE) | ||
| 5227 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | ||
| 5228 | syntax &= ~RE_DOT_NEWLINE; | ||
| 5229 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; | ||
| 5230 | /* It also changes the matching behavior. */ | ||
| 5231 | preg->newline_anchor = 1; | ||
| 5232 | } | ||
| 5233 | else | ||
| 5234 | preg->newline_anchor = 0; | ||
| 5235 | |||
| 5236 | preg->no_sub = !!(cflags & REG_NOSUB); | ||
| 5237 | |||
| 5238 | /* POSIX says a null character in the pattern terminates it, so we | ||
| 5239 | can use strlen here in compiling the pattern. */ | ||
| 5240 | ret = regex_compile (pattern, strlen (pattern), syntax, preg); | ||
| 5241 | |||
| 5242 | /* POSIX doesn't distinguish between an unmatched open-group and an | ||
| 5243 | unmatched close-group: both are REG_EPAREN. */ | ||
| 5244 | if (ret == REG_ERPAREN) ret = REG_EPAREN; | ||
| 5245 | |||
| 5246 | return (int) ret; | ||
| 5247 | } | ||
| 5248 | |||
| 5249 | |||
| 5250 | /* regexec searches for a given pattern, specified by PREG, in the | ||
| 5251 | string STRING. | ||
| 5252 | |||
| 5253 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | ||
| 5254 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | ||
| 5255 | least NMATCH elements, and we set them to the offsets of the | ||
| 5256 | corresponding matched substrings. | ||
| 5257 | |||
| 5258 | EFLAGS specifies `execution flags' which affect matching: if | ||
| 5259 | REG_NOTBOL is set, then ^ does not match at the beginning of the | ||
| 5260 | string; if REG_NOTEOL is set, then $ does not match at the end. | ||
| 5261 | |||
| 5262 | We return 0 if we find a match and REG_NOMATCH if not. */ | ||
| 5263 | |||
| 5264 | int | ||
| 5265 | regexec (preg, string, nmatch, pmatch, eflags) | ||
| 5266 | const regex_t *preg; | ||
| 5267 | const char *string; | ||
| 5268 | size_t nmatch; | ||
| 5269 | regmatch_t pmatch[]; | ||
| 5270 | int eflags; | ||
| 5271 | { | ||
| 5272 | int ret; | ||
| 5273 | struct re_registers regs; | ||
| 5274 | regex_t private_preg; | ||
| 5275 | int len = strlen (string); | ||
| 5276 | boolean want_reg_info = !preg->no_sub && nmatch > 0; | ||
| 5277 | |||
| 5278 | private_preg = *preg; | ||
| 5279 | |||
| 5280 | private_preg.not_bol = !!(eflags & REG_NOTBOL); | ||
| 5281 | private_preg.not_eol = !!(eflags & REG_NOTEOL); | ||
| 5282 | |||
| 5283 | /* The user has told us exactly how many registers to return | ||
| 5284 | information about, via `nmatch'. We have to pass that on to the | ||
| 5285 | matching routines. */ | ||
| 5286 | private_preg.regs_allocated = REGS_FIXED; | ||
| 5287 | |||
| 5288 | if (want_reg_info) | ||
| 5289 | { | ||
| 5290 | regs.num_regs = nmatch; | ||
| 5291 | regs.start = TALLOC (nmatch, regoff_t); | ||
| 5292 | regs.end = TALLOC (nmatch, regoff_t); | ||
| 5293 | if (regs.start == NULL || regs.end == NULL) | ||
| 5294 | return (int) REG_NOMATCH; | ||
| 5295 | } | ||
| 5296 | |||
| 5297 | /* Perform the searching operation. */ | ||
| 5298 | ret = re_search (&private_preg, string, len, | ||
| 5299 | /* start: */ 0, /* range: */ len, | ||
| 5300 | want_reg_info ? ®s : (struct re_registers *) 0); | ||
| 5301 | |||
| 5302 | /* Copy the register information to the POSIX structure. */ | ||
| 5303 | if (want_reg_info) | ||
| 5304 | { | ||
| 5305 | if (ret >= 0) | ||
| 5306 | { | ||
| 5307 | unsigned r; | ||
| 5308 | |||
| 5309 | for (r = 0; r < nmatch; r++) | ||
| 5310 | { | ||
| 5311 | pmatch[r].rm_so = regs.start[r]; | ||
| 5312 | pmatch[r].rm_eo = regs.end[r]; | ||
| 5313 | } | ||
| 5314 | } | ||
| 5315 | |||
| 5316 | /* If we needed the temporary register info, free the space now. */ | ||
| 5317 | free (regs.start); | ||
| 5318 | free (regs.end); | ||
| 5319 | } | ||
| 5320 | |||
| 5321 | /* We want zero return to mean success, unlike `re_search'. */ | ||
| 5322 | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | ||
| 5323 | } | ||
| 5324 | |||
| 5325 | |||
| 5326 | /* Returns a message corresponding to an error code, ERRCODE, returned | ||
| 5327 | from either regcomp or regexec. We don't use PREG here. */ | ||
| 5328 | |||
| 5329 | size_t | ||
| 5330 | regerror (errcode, preg, errbuf, errbuf_size) | ||
| 5331 | int errcode; | ||
| 5332 | const regex_t *preg; | ||
| 5333 | char *errbuf; | ||
| 5334 | size_t errbuf_size; | ||
| 5335 | { | ||
| 5336 | const char *msg; | ||
| 5337 | size_t msg_size; | ||
| 5338 | |||
| 5339 | if (errcode < 0 | ||
| 5340 | || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) | ||
| 5341 | /* Only error codes returned by the rest of the code should be passed | ||
| 5342 | to this routine. If we are given anything else, or if other regex | ||
| 5343 | code generates an invalid error code, then the program has a bug. | ||
| 5344 | Dump core so we can fix it. */ | ||
| 5345 | abort (); | ||
| 5346 | |||
| 5347 | msg = gettext (re_error_msgid[errcode]); | ||
| 5348 | |||
| 5349 | msg_size = strlen (msg) + 1; /* Includes the null. */ | ||
| 5350 | |||
| 5351 | if (errbuf_size != 0) | ||
| 5352 | { | ||
| 5353 | if (msg_size > errbuf_size) | ||
| 5354 | { | ||
| 5355 | strncpy (errbuf, msg, errbuf_size - 1); | ||
| 5356 | errbuf[errbuf_size - 1] = 0; | ||
| 5357 | } | ||
| 5358 | else | ||
| 5359 | strcpy (errbuf, msg); | ||
| 5360 | } | ||
| 5361 | |||
| 5362 | return msg_size; | ||
| 5363 | } | ||
| 5364 | |||
| 5365 | |||
| 5366 | /* Free dynamically allocated space used by PREG. */ | ||
| 5367 | |||
| 5368 | void | ||
| 5369 | regfree (preg) | ||
| 5370 | regex_t *preg; | ||
| 5371 | { | ||
| 5372 | if (preg->buffer != NULL) | ||
| 5373 | free (preg->buffer); | ||
| 5374 | preg->buffer = NULL; | ||
| 5375 | |||
| 5376 | preg->allocated = 0; | ||
| 5377 | preg->used = 0; | ||
| 5378 | |||
| 5379 | if (preg->fastmap != NULL) | ||
| 5380 | free (preg->fastmap); | ||
| 5381 | preg->fastmap = NULL; | ||
| 5382 | preg->fastmap_accurate = 0; | ||
| 5383 | |||
| 5384 | if (preg->translate != NULL) | ||
| 5385 | free (preg->translate); | ||
| 5386 | preg->translate = NULL; | ||
| 5387 | } | ||
| 5388 | |||
| 5389 | #endif /* not emacs */ | ||
| 5390 | |||
| 5391 | /* | ||
| 5392 | Local variables: | ||
| 5393 | make-backup-files: t | ||
| 5394 | version-control: t | ||
| 5395 | trim-versions-without-asking: nil | ||
| 5396 | End: | ||
| 5397 | */ | ||