diff options
| author | Glenn Morris | 2007-09-06 04:25:08 +0000 |
|---|---|---|
| committer | Glenn Morris | 2007-09-06 04:25:08 +0000 |
| commit | b8d4c8d0e9326f8ed2d1f6fc0a38fb89ec29ed27 (patch) | |
| tree | 35344b3af55b9a142f03e1a3600dd162fb8c55cc /doc/lispref/sequences.texi | |
| parent | f69340d750ef530bcc3497243ab3be3187f8ce6e (diff) | |
| download | emacs-b8d4c8d0e9326f8ed2d1f6fc0a38fb89ec29ed27.tar.gz emacs-b8d4c8d0e9326f8ed2d1f6fc0a38fb89ec29ed27.zip | |
Move here from ../../lispref
Diffstat (limited to 'doc/lispref/sequences.texi')
| -rw-r--r-- | doc/lispref/sequences.texi | 734 |
1 files changed, 734 insertions, 0 deletions
diff --git a/doc/lispref/sequences.texi b/doc/lispref/sequences.texi new file mode 100644 index 00000000000..7e66549412b --- /dev/null +++ b/doc/lispref/sequences.texi | |||
| @@ -0,0 +1,734 @@ | |||
| 1 | @c -*-texinfo-*- | ||
| 2 | @c This is part of the GNU Emacs Lisp Reference Manual. | ||
| 3 | @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001, | ||
| 4 | @c 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. | ||
| 5 | @c See the file elisp.texi for copying conditions. | ||
| 6 | @setfilename ../info/sequences | ||
| 7 | @node Sequences Arrays Vectors, Hash Tables, Lists, Top | ||
| 8 | @chapter Sequences, Arrays, and Vectors | ||
| 9 | @cindex sequence | ||
| 10 | |||
| 11 | Recall that the @dfn{sequence} type is the union of two other Lisp | ||
| 12 | types: lists and arrays. In other words, any list is a sequence, and | ||
| 13 | any array is a sequence. The common property that all sequences have is | ||
| 14 | that each is an ordered collection of elements. | ||
| 15 | |||
| 16 | An @dfn{array} is a single primitive object that has a slot for each | ||
| 17 | of its elements. All the elements are accessible in constant time, but | ||
| 18 | the length of an existing array cannot be changed. Strings, vectors, | ||
| 19 | char-tables and bool-vectors are the four types of arrays. | ||
| 20 | |||
| 21 | A list is a sequence of elements, but it is not a single primitive | ||
| 22 | object; it is made of cons cells, one cell per element. Finding the | ||
| 23 | @var{n}th element requires looking through @var{n} cons cells, so | ||
| 24 | elements farther from the beginning of the list take longer to access. | ||
| 25 | But it is possible to add elements to the list, or remove elements. | ||
| 26 | |||
| 27 | The following diagram shows the relationship between these types: | ||
| 28 | |||
| 29 | @example | ||
| 30 | @group | ||
| 31 | _____________________________________________ | ||
| 32 | | | | ||
| 33 | | Sequence | | ||
| 34 | | ______ ________________________________ | | ||
| 35 | | | | | | | | ||
| 36 | | | List | | Array | | | ||
| 37 | | | | | ________ ________ | | | ||
| 38 | | |______| | | | | | | | | ||
| 39 | | | | Vector | | String | | | | ||
| 40 | | | |________| |________| | | | ||
| 41 | | | ____________ _____________ | | | ||
| 42 | | | | | | | | | | ||
| 43 | | | | Char-table | | Bool-vector | | | | ||
| 44 | | | |____________| |_____________| | | | ||
| 45 | | |________________________________| | | ||
| 46 | |_____________________________________________| | ||
| 47 | @end group | ||
| 48 | @end example | ||
| 49 | |||
| 50 | The elements of vectors and lists may be any Lisp objects. The | ||
| 51 | elements of strings are all characters. | ||
| 52 | |||
| 53 | @menu | ||
| 54 | * Sequence Functions:: Functions that accept any kind of sequence. | ||
| 55 | * Arrays:: Characteristics of arrays in Emacs Lisp. | ||
| 56 | * Array Functions:: Functions specifically for arrays. | ||
| 57 | * Vectors:: Special characteristics of Emacs Lisp vectors. | ||
| 58 | * Vector Functions:: Functions specifically for vectors. | ||
| 59 | * Char-Tables:: How to work with char-tables. | ||
| 60 | * Bool-Vectors:: How to work with bool-vectors. | ||
| 61 | @end menu | ||
| 62 | |||
| 63 | @node Sequence Functions | ||
| 64 | @section Sequences | ||
| 65 | |||
| 66 | In Emacs Lisp, a @dfn{sequence} is either a list or an array. The | ||
| 67 | common property of all sequences is that they are ordered collections of | ||
| 68 | elements. This section describes functions that accept any kind of | ||
| 69 | sequence. | ||
| 70 | |||
| 71 | @defun sequencep object | ||
| 72 | Returns @code{t} if @var{object} is a list, vector, string, | ||
| 73 | bool-vector, or char-table, @code{nil} otherwise. | ||
| 74 | @end defun | ||
| 75 | |||
| 76 | @defun length sequence | ||
| 77 | @cindex string length | ||
| 78 | @cindex list length | ||
| 79 | @cindex vector length | ||
| 80 | @cindex sequence length | ||
| 81 | @cindex char-table length | ||
| 82 | This function returns the number of elements in @var{sequence}. If | ||
| 83 | @var{sequence} is a dotted list, a @code{wrong-type-argument} error is | ||
| 84 | signaled. Circular lists may cause an infinite loop. For a | ||
| 85 | char-table, the value returned is always one more than the maximum | ||
| 86 | Emacs character code. | ||
| 87 | |||
| 88 | @xref{Definition of safe-length}, for the related function @code{safe-length}. | ||
| 89 | |||
| 90 | @example | ||
| 91 | @group | ||
| 92 | (length '(1 2 3)) | ||
| 93 | @result{} 3 | ||
| 94 | @end group | ||
| 95 | @group | ||
| 96 | (length ()) | ||
| 97 | @result{} 0 | ||
| 98 | @end group | ||
| 99 | @group | ||
| 100 | (length "foobar") | ||
| 101 | @result{} 6 | ||
| 102 | @end group | ||
| 103 | @group | ||
| 104 | (length [1 2 3]) | ||
| 105 | @result{} 3 | ||
| 106 | @end group | ||
| 107 | @group | ||
| 108 | (length (make-bool-vector 5 nil)) | ||
| 109 | @result{} 5 | ||
| 110 | @end group | ||
| 111 | @end example | ||
| 112 | @end defun | ||
| 113 | |||
| 114 | @noindent | ||
| 115 | See also @code{string-bytes}, in @ref{Text Representations}. | ||
| 116 | |||
| 117 | @defun elt sequence index | ||
| 118 | @cindex elements of sequences | ||
| 119 | This function returns the element of @var{sequence} indexed by | ||
| 120 | @var{index}. Legitimate values of @var{index} are integers ranging | ||
| 121 | from 0 up to one less than the length of @var{sequence}. If | ||
| 122 | @var{sequence} is a list, out-of-range values behave as for | ||
| 123 | @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values | ||
| 124 | trigger an @code{args-out-of-range} error. | ||
| 125 | |||
| 126 | @example | ||
| 127 | @group | ||
| 128 | (elt [1 2 3 4] 2) | ||
| 129 | @result{} 3 | ||
| 130 | @end group | ||
| 131 | @group | ||
| 132 | (elt '(1 2 3 4) 2) | ||
| 133 | @result{} 3 | ||
| 134 | @end group | ||
| 135 | @group | ||
| 136 | ;; @r{We use @code{string} to show clearly which character @code{elt} returns.} | ||
| 137 | (string (elt "1234" 2)) | ||
| 138 | @result{} "3" | ||
| 139 | @end group | ||
| 140 | @group | ||
| 141 | (elt [1 2 3 4] 4) | ||
| 142 | @error{} Args out of range: [1 2 3 4], 4 | ||
| 143 | @end group | ||
| 144 | @group | ||
| 145 | (elt [1 2 3 4] -1) | ||
| 146 | @error{} Args out of range: [1 2 3 4], -1 | ||
| 147 | @end group | ||
| 148 | @end example | ||
| 149 | |||
| 150 | This function generalizes @code{aref} (@pxref{Array Functions}) and | ||
| 151 | @code{nth} (@pxref{Definition of nth}). | ||
| 152 | @end defun | ||
| 153 | |||
| 154 | @defun copy-sequence sequence | ||
| 155 | @cindex copying sequences | ||
| 156 | Returns a copy of @var{sequence}. The copy is the same type of object | ||
| 157 | as the original sequence, and it has the same elements in the same order. | ||
| 158 | |||
| 159 | Storing a new element into the copy does not affect the original | ||
| 160 | @var{sequence}, and vice versa. However, the elements of the new | ||
| 161 | sequence are not copies; they are identical (@code{eq}) to the elements | ||
| 162 | of the original. Therefore, changes made within these elements, as | ||
| 163 | found via the copied sequence, are also visible in the original | ||
| 164 | sequence. | ||
| 165 | |||
| 166 | If the sequence is a string with text properties, the property list in | ||
| 167 | the copy is itself a copy, not shared with the original's property | ||
| 168 | list. However, the actual values of the properties are shared. | ||
| 169 | @xref{Text Properties}. | ||
| 170 | |||
| 171 | This function does not work for dotted lists. Trying to copy a | ||
| 172 | circular list may cause an infinite loop. | ||
| 173 | |||
| 174 | See also @code{append} in @ref{Building Lists}, @code{concat} in | ||
| 175 | @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions}, | ||
| 176 | for other ways to copy sequences. | ||
| 177 | |||
| 178 | @example | ||
| 179 | @group | ||
| 180 | (setq bar '(1 2)) | ||
| 181 | @result{} (1 2) | ||
| 182 | @end group | ||
| 183 | @group | ||
| 184 | (setq x (vector 'foo bar)) | ||
| 185 | @result{} [foo (1 2)] | ||
| 186 | @end group | ||
| 187 | @group | ||
| 188 | (setq y (copy-sequence x)) | ||
| 189 | @result{} [foo (1 2)] | ||
| 190 | @end group | ||
| 191 | |||
| 192 | @group | ||
| 193 | (eq x y) | ||
| 194 | @result{} nil | ||
| 195 | @end group | ||
| 196 | @group | ||
| 197 | (equal x y) | ||
| 198 | @result{} t | ||
| 199 | @end group | ||
| 200 | @group | ||
| 201 | (eq (elt x 1) (elt y 1)) | ||
| 202 | @result{} t | ||
| 203 | @end group | ||
| 204 | |||
| 205 | @group | ||
| 206 | ;; @r{Replacing an element of one sequence.} | ||
| 207 | (aset x 0 'quux) | ||
| 208 | x @result{} [quux (1 2)] | ||
| 209 | y @result{} [foo (1 2)] | ||
| 210 | @end group | ||
| 211 | |||
| 212 | @group | ||
| 213 | ;; @r{Modifying the inside of a shared element.} | ||
| 214 | (setcar (aref x 1) 69) | ||
| 215 | x @result{} [quux (69 2)] | ||
| 216 | y @result{} [foo (69 2)] | ||
| 217 | @end group | ||
| 218 | @end example | ||
| 219 | @end defun | ||
| 220 | |||
| 221 | @node Arrays | ||
| 222 | @section Arrays | ||
| 223 | @cindex array | ||
| 224 | |||
| 225 | An @dfn{array} object has slots that hold a number of other Lisp | ||
| 226 | objects, called the elements of the array. Any element of an array may | ||
| 227 | be accessed in constant time. In contrast, an element of a list | ||
| 228 | requires access time that is proportional to the position of the element | ||
| 229 | in the list. | ||
| 230 | |||
| 231 | Emacs defines four types of array, all one-dimensional: @dfn{strings}, | ||
| 232 | @dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}. A vector is a | ||
| 233 | general array; its elements can be any Lisp objects. A string is a | ||
| 234 | specialized array; its elements must be characters. Each type of array | ||
| 235 | has its own read syntax. | ||
| 236 | @xref{String Type}, and @ref{Vector Type}. | ||
| 237 | |||
| 238 | All four kinds of array share these characteristics: | ||
| 239 | |||
| 240 | @itemize @bullet | ||
| 241 | @item | ||
| 242 | The first element of an array has index zero, the second element has | ||
| 243 | index 1, and so on. This is called @dfn{zero-origin} indexing. For | ||
| 244 | example, an array of four elements has indices 0, 1, 2, @w{and 3}. | ||
| 245 | |||
| 246 | @item | ||
| 247 | The length of the array is fixed once you create it; you cannot | ||
| 248 | change the length of an existing array. | ||
| 249 | |||
| 250 | @item | ||
| 251 | For purposes of evaluation, the array is a constant---in other words, | ||
| 252 | it evaluates to itself. | ||
| 253 | |||
| 254 | @item | ||
| 255 | The elements of an array may be referenced or changed with the functions | ||
| 256 | @code{aref} and @code{aset}, respectively (@pxref{Array Functions}). | ||
| 257 | @end itemize | ||
| 258 | |||
| 259 | When you create an array, other than a char-table, you must specify | ||
| 260 | its length. You cannot specify the length of a char-table, because that | ||
| 261 | is determined by the range of character codes. | ||
| 262 | |||
| 263 | In principle, if you want an array of text characters, you could use | ||
| 264 | either a string or a vector. In practice, we always choose strings for | ||
| 265 | such applications, for four reasons: | ||
| 266 | |||
| 267 | @itemize @bullet | ||
| 268 | @item | ||
| 269 | They occupy one-fourth the space of a vector of the same elements. | ||
| 270 | |||
| 271 | @item | ||
| 272 | Strings are printed in a way that shows the contents more clearly | ||
| 273 | as text. | ||
| 274 | |||
| 275 | @item | ||
| 276 | Strings can hold text properties. @xref{Text Properties}. | ||
| 277 | |||
| 278 | @item | ||
| 279 | Many of the specialized editing and I/O facilities of Emacs accept only | ||
| 280 | strings. For example, you cannot insert a vector of characters into a | ||
| 281 | buffer the way you can insert a string. @xref{Strings and Characters}. | ||
| 282 | @end itemize | ||
| 283 | |||
| 284 | By contrast, for an array of keyboard input characters (such as a key | ||
| 285 | sequence), a vector may be necessary, because many keyboard input | ||
| 286 | characters are outside the range that will fit in a string. @xref{Key | ||
| 287 | Sequence Input}. | ||
| 288 | |||
| 289 | @node Array Functions | ||
| 290 | @section Functions that Operate on Arrays | ||
| 291 | |||
| 292 | In this section, we describe the functions that accept all types of | ||
| 293 | arrays. | ||
| 294 | |||
| 295 | @defun arrayp object | ||
| 296 | This function returns @code{t} if @var{object} is an array (i.e., a | ||
| 297 | vector, a string, a bool-vector or a char-table). | ||
| 298 | |||
| 299 | @example | ||
| 300 | @group | ||
| 301 | (arrayp [a]) | ||
| 302 | @result{} t | ||
| 303 | (arrayp "asdf") | ||
| 304 | @result{} t | ||
| 305 | (arrayp (syntax-table)) ;; @r{A char-table.} | ||
| 306 | @result{} t | ||
| 307 | @end group | ||
| 308 | @end example | ||
| 309 | @end defun | ||
| 310 | |||
| 311 | @defun aref array index | ||
| 312 | @cindex array elements | ||
| 313 | This function returns the @var{index}th element of @var{array}. The | ||
| 314 | first element is at index zero. | ||
| 315 | |||
| 316 | @example | ||
| 317 | @group | ||
| 318 | (setq primes [2 3 5 7 11 13]) | ||
| 319 | @result{} [2 3 5 7 11 13] | ||
| 320 | (aref primes 4) | ||
| 321 | @result{} 11 | ||
| 322 | @end group | ||
| 323 | @group | ||
| 324 | (aref "abcdefg" 1) | ||
| 325 | @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.} | ||
| 326 | @end group | ||
| 327 | @end example | ||
| 328 | |||
| 329 | See also the function @code{elt}, in @ref{Sequence Functions}. | ||
| 330 | @end defun | ||
| 331 | |||
| 332 | @defun aset array index object | ||
| 333 | This function sets the @var{index}th element of @var{array} to be | ||
| 334 | @var{object}. It returns @var{object}. | ||
| 335 | |||
| 336 | @example | ||
| 337 | @group | ||
| 338 | (setq w [foo bar baz]) | ||
| 339 | @result{} [foo bar baz] | ||
| 340 | (aset w 0 'fu) | ||
| 341 | @result{} fu | ||
| 342 | w | ||
| 343 | @result{} [fu bar baz] | ||
| 344 | @end group | ||
| 345 | |||
| 346 | @group | ||
| 347 | (setq x "asdfasfd") | ||
| 348 | @result{} "asdfasfd" | ||
| 349 | (aset x 3 ?Z) | ||
| 350 | @result{} 90 | ||
| 351 | x | ||
| 352 | @result{} "asdZasfd" | ||
| 353 | @end group | ||
| 354 | @end example | ||
| 355 | |||
| 356 | If @var{array} is a string and @var{object} is not a character, a | ||
| 357 | @code{wrong-type-argument} error results. The function converts a | ||
| 358 | unibyte string to multibyte if necessary to insert a character. | ||
| 359 | @end defun | ||
| 360 | |||
| 361 | @defun fillarray array object | ||
| 362 | This function fills the array @var{array} with @var{object}, so that | ||
| 363 | each element of @var{array} is @var{object}. It returns @var{array}. | ||
| 364 | |||
| 365 | @example | ||
| 366 | @group | ||
| 367 | (setq a [a b c d e f g]) | ||
| 368 | @result{} [a b c d e f g] | ||
| 369 | (fillarray a 0) | ||
| 370 | @result{} [0 0 0 0 0 0 0] | ||
| 371 | a | ||
| 372 | @result{} [0 0 0 0 0 0 0] | ||
| 373 | @end group | ||
| 374 | @group | ||
| 375 | (setq s "When in the course") | ||
| 376 | @result{} "When in the course" | ||
| 377 | (fillarray s ?-) | ||
| 378 | @result{} "------------------" | ||
| 379 | @end group | ||
| 380 | @end example | ||
| 381 | |||
| 382 | If @var{array} is a string and @var{object} is not a character, a | ||
| 383 | @code{wrong-type-argument} error results. | ||
| 384 | @end defun | ||
| 385 | |||
| 386 | The general sequence functions @code{copy-sequence} and @code{length} | ||
| 387 | are often useful for objects known to be arrays. @xref{Sequence Functions}. | ||
| 388 | |||
| 389 | @node Vectors | ||
| 390 | @section Vectors | ||
| 391 | @cindex vector (type) | ||
| 392 | |||
| 393 | Arrays in Lisp, like arrays in most languages, are blocks of memory | ||
| 394 | whose elements can be accessed in constant time. A @dfn{vector} is a | ||
| 395 | general-purpose array of specified length; its elements can be any Lisp | ||
| 396 | objects. (By contrast, a string can hold only characters as elements.) | ||
| 397 | Vectors in Emacs are used for obarrays (vectors of symbols), and as part | ||
| 398 | of keymaps (vectors of commands). They are also used internally as part | ||
| 399 | of the representation of a byte-compiled function; if you print such a | ||
| 400 | function, you will see a vector in it. | ||
| 401 | |||
| 402 | In Emacs Lisp, the indices of the elements of a vector start from zero | ||
| 403 | and count up from there. | ||
| 404 | |||
| 405 | Vectors are printed with square brackets surrounding the elements. | ||
| 406 | Thus, a vector whose elements are the symbols @code{a}, @code{b} and | ||
| 407 | @code{a} is printed as @code{[a b a]}. You can write vectors in the | ||
| 408 | same way in Lisp input. | ||
| 409 | |||
| 410 | A vector, like a string or a number, is considered a constant for | ||
| 411 | evaluation: the result of evaluating it is the same vector. This does | ||
| 412 | not evaluate or even examine the elements of the vector. | ||
| 413 | @xref{Self-Evaluating Forms}. | ||
| 414 | |||
| 415 | Here are examples illustrating these principles: | ||
| 416 | |||
| 417 | @example | ||
| 418 | @group | ||
| 419 | (setq avector [1 two '(three) "four" [five]]) | ||
| 420 | @result{} [1 two (quote (three)) "four" [five]] | ||
| 421 | (eval avector) | ||
| 422 | @result{} [1 two (quote (three)) "four" [five]] | ||
| 423 | (eq avector (eval avector)) | ||
| 424 | @result{} t | ||
| 425 | @end group | ||
| 426 | @end example | ||
| 427 | |||
| 428 | @node Vector Functions | ||
| 429 | @section Functions for Vectors | ||
| 430 | |||
| 431 | Here are some functions that relate to vectors: | ||
| 432 | |||
| 433 | @defun vectorp object | ||
| 434 | This function returns @code{t} if @var{object} is a vector. | ||
| 435 | |||
| 436 | @example | ||
| 437 | @group | ||
| 438 | (vectorp [a]) | ||
| 439 | @result{} t | ||
| 440 | (vectorp "asdf") | ||
| 441 | @result{} nil | ||
| 442 | @end group | ||
| 443 | @end example | ||
| 444 | @end defun | ||
| 445 | |||
| 446 | @defun vector &rest objects | ||
| 447 | This function creates and returns a vector whose elements are the | ||
| 448 | arguments, @var{objects}. | ||
| 449 | |||
| 450 | @example | ||
| 451 | @group | ||
| 452 | (vector 'foo 23 [bar baz] "rats") | ||
| 453 | @result{} [foo 23 [bar baz] "rats"] | ||
| 454 | (vector) | ||
| 455 | @result{} [] | ||
| 456 | @end group | ||
| 457 | @end example | ||
| 458 | @end defun | ||
| 459 | |||
| 460 | @defun make-vector length object | ||
| 461 | This function returns a new vector consisting of @var{length} elements, | ||
| 462 | each initialized to @var{object}. | ||
| 463 | |||
| 464 | @example | ||
| 465 | @group | ||
| 466 | (setq sleepy (make-vector 9 'Z)) | ||
| 467 | @result{} [Z Z Z Z Z Z Z Z Z] | ||
| 468 | @end group | ||
| 469 | @end example | ||
| 470 | @end defun | ||
| 471 | |||
| 472 | @defun vconcat &rest sequences | ||
| 473 | @cindex copying vectors | ||
| 474 | This function returns a new vector containing all the elements of the | ||
| 475 | @var{sequences}. The arguments @var{sequences} may be true lists, | ||
| 476 | vectors, strings or bool-vectors. If no @var{sequences} are given, an | ||
| 477 | empty vector is returned. | ||
| 478 | |||
| 479 | The value is a newly constructed vector that is not @code{eq} to any | ||
| 480 | existing vector. | ||
| 481 | |||
| 482 | @example | ||
| 483 | @group | ||
| 484 | (setq a (vconcat '(A B C) '(D E F))) | ||
| 485 | @result{} [A B C D E F] | ||
| 486 | (eq a (vconcat a)) | ||
| 487 | @result{} nil | ||
| 488 | @end group | ||
| 489 | @group | ||
| 490 | (vconcat) | ||
| 491 | @result{} [] | ||
| 492 | (vconcat [A B C] "aa" '(foo (6 7))) | ||
| 493 | @result{} [A B C 97 97 foo (6 7)] | ||
| 494 | @end group | ||
| 495 | @end example | ||
| 496 | |||
| 497 | The @code{vconcat} function also allows byte-code function objects as | ||
| 498 | arguments. This is a special feature to make it easy to access the entire | ||
| 499 | contents of a byte-code function object. @xref{Byte-Code Objects}. | ||
| 500 | |||
| 501 | In Emacs versions before 21, the @code{vconcat} function allowed | ||
| 502 | integers as arguments, converting them to strings of digits, but that | ||
| 503 | feature has been eliminated. The proper way to convert an integer to | ||
| 504 | a decimal number in this way is with @code{format} (@pxref{Formatting | ||
| 505 | Strings}) or @code{number-to-string} (@pxref{String Conversion}). | ||
| 506 | |||
| 507 | For other concatenation functions, see @code{mapconcat} in @ref{Mapping | ||
| 508 | Functions}, @code{concat} in @ref{Creating Strings}, and @code{append} | ||
| 509 | in @ref{Building Lists}. | ||
| 510 | @end defun | ||
| 511 | |||
| 512 | The @code{append} function also provides a way to convert a vector into a | ||
| 513 | list with the same elements: | ||
| 514 | |||
| 515 | @example | ||
| 516 | @group | ||
| 517 | (setq avector [1 two (quote (three)) "four" [five]]) | ||
| 518 | @result{} [1 two (quote (three)) "four" [five]] | ||
| 519 | (append avector nil) | ||
| 520 | @result{} (1 two (quote (three)) "four" [five]) | ||
| 521 | @end group | ||
| 522 | @end example | ||
| 523 | |||
| 524 | @node Char-Tables | ||
| 525 | @section Char-Tables | ||
| 526 | @cindex char-tables | ||
| 527 | @cindex extra slots of char-table | ||
| 528 | |||
| 529 | A char-table is much like a vector, except that it is indexed by | ||
| 530 | character codes. Any valid character code, without modifiers, can be | ||
| 531 | used as an index in a char-table. You can access a char-table's | ||
| 532 | elements with @code{aref} and @code{aset}, as with any array. In | ||
| 533 | addition, a char-table can have @dfn{extra slots} to hold additional | ||
| 534 | data not associated with particular character codes. Char-tables are | ||
| 535 | constants when evaluated. | ||
| 536 | |||
| 537 | @cindex subtype of char-table | ||
| 538 | Each char-table has a @dfn{subtype} which is a symbol. The subtype | ||
| 539 | has two purposes: to distinguish char-tables meant for different uses, | ||
| 540 | and to control the number of extra slots. For example, display tables | ||
| 541 | are char-tables with @code{display-table} as the subtype, and syntax | ||
| 542 | tables are char-tables with @code{syntax-table} as the subtype. A valid | ||
| 543 | subtype must have a @code{char-table-extra-slots} property which is an | ||
| 544 | integer between 0 and 10. This integer specifies the number of | ||
| 545 | @dfn{extra slots} in the char-table. | ||
| 546 | |||
| 547 | @cindex parent of char-table | ||
| 548 | A char-table can have a @dfn{parent}, which is another char-table. If | ||
| 549 | it does, then whenever the char-table specifies @code{nil} for a | ||
| 550 | particular character @var{c}, it inherits the value specified in the | ||
| 551 | parent. In other words, @code{(aref @var{char-table} @var{c})} returns | ||
| 552 | the value from the parent of @var{char-table} if @var{char-table} itself | ||
| 553 | specifies @code{nil}. | ||
| 554 | |||
| 555 | @cindex default value of char-table | ||
| 556 | A char-table can also have a @dfn{default value}. If so, then | ||
| 557 | @code{(aref @var{char-table} @var{c})} returns the default value | ||
| 558 | whenever the char-table does not specify any other non-@code{nil} value. | ||
| 559 | |||
| 560 | @defun make-char-table subtype &optional init | ||
| 561 | Return a newly created char-table, with subtype @var{subtype}. Each | ||
| 562 | element is initialized to @var{init}, which defaults to @code{nil}. You | ||
| 563 | cannot alter the subtype of a char-table after the char-table is | ||
| 564 | created. | ||
| 565 | |||
| 566 | There is no argument to specify the length of the char-table, because | ||
| 567 | all char-tables have room for any valid character code as an index. | ||
| 568 | @end defun | ||
| 569 | |||
| 570 | @defun char-table-p object | ||
| 571 | This function returns @code{t} if @var{object} is a char-table, | ||
| 572 | otherwise @code{nil}. | ||
| 573 | @end defun | ||
| 574 | |||
| 575 | @defun char-table-subtype char-table | ||
| 576 | This function returns the subtype symbol of @var{char-table}. | ||
| 577 | @end defun | ||
| 578 | |||
| 579 | @defun set-char-table-default char-table char new-default | ||
| 580 | This function sets the default value of generic character @var{char} | ||
| 581 | in @var{char-table} to @var{new-default}. | ||
| 582 | |||
| 583 | There is no special function to access default values in a char-table. | ||
| 584 | To do that, use @code{char-table-range} (see below). | ||
| 585 | @end defun | ||
| 586 | |||
| 587 | @defun char-table-parent char-table | ||
| 588 | This function returns the parent of @var{char-table}. The parent is | ||
| 589 | always either @code{nil} or another char-table. | ||
| 590 | @end defun | ||
| 591 | |||
| 592 | @defun set-char-table-parent char-table new-parent | ||
| 593 | This function sets the parent of @var{char-table} to @var{new-parent}. | ||
| 594 | @end defun | ||
| 595 | |||
| 596 | @defun char-table-extra-slot char-table n | ||
| 597 | This function returns the contents of extra slot @var{n} of | ||
| 598 | @var{char-table}. The number of extra slots in a char-table is | ||
| 599 | determined by its subtype. | ||
| 600 | @end defun | ||
| 601 | |||
| 602 | @defun set-char-table-extra-slot char-table n value | ||
| 603 | This function stores @var{value} in extra slot @var{n} of | ||
| 604 | @var{char-table}. | ||
| 605 | @end defun | ||
| 606 | |||
| 607 | A char-table can specify an element value for a single character code; | ||
| 608 | it can also specify a value for an entire character set. | ||
| 609 | |||
| 610 | @defun char-table-range char-table range | ||
| 611 | This returns the value specified in @var{char-table} for a range of | ||
| 612 | characters @var{range}. Here are the possibilities for @var{range}: | ||
| 613 | |||
| 614 | @table @asis | ||
| 615 | @item @code{nil} | ||
| 616 | Refers to the default value. | ||
| 617 | |||
| 618 | @item @var{char} | ||
| 619 | Refers to the element for character @var{char} | ||
| 620 | (supposing @var{char} is a valid character code). | ||
| 621 | |||
| 622 | @item @var{charset} | ||
| 623 | Refers to the value specified for the whole character set | ||
| 624 | @var{charset} (@pxref{Character Sets}). | ||
| 625 | |||
| 626 | @item @var{generic-char} | ||
| 627 | A generic character stands for a character set, or a row of a | ||
| 628 | character set; specifying the generic character as argument is | ||
| 629 | equivalent to specifying the character set name. @xref{Splitting | ||
| 630 | Characters}, for a description of generic characters. | ||
| 631 | @end table | ||
| 632 | @end defun | ||
| 633 | |||
| 634 | @defun set-char-table-range char-table range value | ||
| 635 | This function sets the value in @var{char-table} for a range of | ||
| 636 | characters @var{range}. Here are the possibilities for @var{range}: | ||
| 637 | |||
| 638 | @table @asis | ||
| 639 | @item @code{nil} | ||
| 640 | Refers to the default value. | ||
| 641 | |||
| 642 | @item @code{t} | ||
| 643 | Refers to the whole range of character codes. | ||
| 644 | |||
| 645 | @item @var{char} | ||
| 646 | Refers to the element for character @var{char} | ||
| 647 | (supposing @var{char} is a valid character code). | ||
| 648 | |||
| 649 | @item @var{charset} | ||
| 650 | Refers to the value specified for the whole character set | ||
| 651 | @var{charset} (@pxref{Character Sets}). | ||
| 652 | |||
| 653 | @item @var{generic-char} | ||
| 654 | A generic character stands for a character set; specifying the generic | ||
| 655 | character as argument is equivalent to specifying the character set | ||
| 656 | name. @xref{Splitting Characters}, for a description of generic characters. | ||
| 657 | @end table | ||
| 658 | @end defun | ||
| 659 | |||
| 660 | @defun map-char-table function char-table | ||
| 661 | This function calls @var{function} for each element of @var{char-table}. | ||
| 662 | @var{function} is called with two arguments, a key and a value. The key | ||
| 663 | is a possible @var{range} argument for @code{char-table-range}---either | ||
| 664 | a valid character or a generic character---and the value is | ||
| 665 | @code{(char-table-range @var{char-table} @var{key})}. | ||
| 666 | |||
| 667 | Overall, the key-value pairs passed to @var{function} describe all the | ||
| 668 | values stored in @var{char-table}. | ||
| 669 | |||
| 670 | The return value is always @code{nil}; to make this function useful, | ||
| 671 | @var{function} should have side effects. For example, | ||
| 672 | here is how to examine each element of the syntax table: | ||
| 673 | |||
| 674 | @example | ||
| 675 | (let (accumulator) | ||
| 676 | (map-char-table | ||
| 677 | #'(lambda (key value) | ||
| 678 | (setq accumulator | ||
| 679 | (cons (list key value) accumulator))) | ||
| 680 | (syntax-table)) | ||
| 681 | accumulator) | ||
| 682 | @result{} | ||
| 683 | ((475008 nil) (474880 nil) (474752 nil) (474624 nil) | ||
| 684 | ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3))) | ||
| 685 | @end example | ||
| 686 | @end defun | ||
| 687 | |||
| 688 | @node Bool-Vectors | ||
| 689 | @section Bool-vectors | ||
| 690 | @cindex Bool-vectors | ||
| 691 | |||
| 692 | A bool-vector is much like a vector, except that it stores only the | ||
| 693 | values @code{t} and @code{nil}. If you try to store any non-@code{nil} | ||
| 694 | value into an element of the bool-vector, the effect is to store | ||
| 695 | @code{t} there. As with all arrays, bool-vector indices start from 0, | ||
| 696 | and the length cannot be changed once the bool-vector is created. | ||
| 697 | Bool-vectors are constants when evaluated. | ||
| 698 | |||
| 699 | There are two special functions for working with bool-vectors; aside | ||
| 700 | from that, you manipulate them with same functions used for other kinds | ||
| 701 | of arrays. | ||
| 702 | |||
| 703 | @defun make-bool-vector length initial | ||
| 704 | Return a new bool-vector of @var{length} elements, | ||
| 705 | each one initialized to @var{initial}. | ||
| 706 | @end defun | ||
| 707 | |||
| 708 | @defun bool-vector-p object | ||
| 709 | This returns @code{t} if @var{object} is a bool-vector, | ||
| 710 | and @code{nil} otherwise. | ||
| 711 | @end defun | ||
| 712 | |||
| 713 | Here is an example of creating, examining, and updating a | ||
| 714 | bool-vector. Note that the printed form represents up to 8 boolean | ||
| 715 | values as a single character. | ||
| 716 | |||
| 717 | @example | ||
| 718 | (setq bv (make-bool-vector 5 t)) | ||
| 719 | @result{} #&5"^_" | ||
| 720 | (aref bv 1) | ||
| 721 | @result{} t | ||
| 722 | (aset bv 3 nil) | ||
| 723 | @result{} nil | ||
| 724 | bv | ||
| 725 | @result{} #&5"^W" | ||
| 726 | @end example | ||
| 727 | |||
| 728 | @noindent | ||
| 729 | These results make sense because the binary codes for control-_ and | ||
| 730 | control-W are 11111 and 10111, respectively. | ||
| 731 | |||
| 732 | @ignore | ||
| 733 | arch-tag: fcf1084a-cd29-4adc-9f16-68586935b386 | ||
| 734 | @end ignore | ||