aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRichard M. Stallman1993-07-30 20:15:09 +0000
committerRichard M. Stallman1993-07-30 20:15:09 +0000
commitfcd737693e8e320acd70f91ec8e0728563244805 (patch)
tree23dee4ef9fea51d370e346e80d765f2a81a29404
parent9b973fd79bcbb6753d1495d49c58a6a1c0eac304 (diff)
downloademacs-fcd737693e8e320acd70f91ec8e0728563244805.tar.gz
emacs-fcd737693e8e320acd70f91ec8e0728563244805.zip
entered into RCS
-rw-r--r--lisp/emacs-lisp/cl-compat.el191
-rw-r--r--lisp/emacs-lisp/cl-extra.el930
-rw-r--r--lisp/emacs-lisp/cl-macs.el2610
-rw-r--r--lisp/emacs-lisp/cl-seq.el920
-rw-r--r--lisp/emacs-lisp/cl.el757
5 files changed, 5408 insertions, 0 deletions
diff --git a/lisp/emacs-lisp/cl-compat.el b/lisp/emacs-lisp/cl-compat.el
new file mode 100644
index 00000000000..f02f6f4db2b
--- /dev/null
+++ b/lisp/emacs-lisp/cl-compat.el
@@ -0,0 +1,191 @@
1;; cl-compat.el --- Common Lisp extensions for GNU Emacs Lisp (compatibility)
2
3;; Copyright (C) 1993 Free Software Foundation, Inc.
4
5;; Author: Dave Gillespie <daveg@synaptics.com>
6;; Version: 2.02
7;; Keywords: extensions
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 1, or (at your option)
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING. If not, write to
23;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25;; Commentary:
26
27;; These are extensions to Emacs Lisp that provide a degree of
28;; Common Lisp compatibility, beyond what is already built-in
29;; in Emacs Lisp.
30;;
31;; This package was written by Dave Gillespie; it is a complete
32;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
33;;
34;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
35;;
36;; Bug reports, comments, and suggestions are welcome!
37
38;; This file contains emulations of internal routines of the older
39;; CL package which users may have called directly from their code.
40;; Use (require 'cl-compat) to get these routines.
41
42;; See cl.el for Change Log.
43
44
45;; Code:
46
47;; Require at load-time, but not when compiling cl-compat.
48(or (featurep 'cl) (require 'cl))
49
50
51;;; Keyword routines not supported by new package.
52
53(defmacro defkeyword (x &optional doc)
54 (list* 'defconst x (list 'quote x) (and doc (list doc))))
55
56(defun keywordp (sym)
57 (and (symbolp sym) (eq (aref (symbol-name sym) 0) ?\:) (set sym sym)))
58
59(defun keyword-of (sym)
60 (or (keywordp sym) (keywordp (intern (format ":%s" sym)))))
61
62
63;;; Multiple values. Note that the new package uses a different
64;;; convention for multiple values. The following definitions
65;;; emulate the old convention; all function names have been changed
66;;; by capitalizing the first letter: Values, Multiple-value-*,
67;;; to avoid conflict with the new-style definitions in cl-macs.
68
69(put 'Multiple-value-bind 'lisp-indent-function 2)
70(put 'Multiple-value-setq 'lisp-indent-function 2)
71(put 'Multiple-value-call 'lisp-indent-function 1)
72(put 'Multiple-value-prog1 'lisp-indent-function 1)
73
74(defvar *mvalues-values* nil)
75
76(defun Values (&rest val-forms)
77 (setq *mvalues-values* val-forms)
78 (car val-forms))
79
80(defun Values-list (val-forms)
81 (apply 'values val-forms))
82
83(defmacro Multiple-value-list (form)
84 (list 'let* (list '(*mvalues-values* nil) (list '*mvalues-temp* form))
85 '(or (and (eq *mvalues-temp* (car *mvalues-values*)) *mvalues-values*)
86 (list *mvalues-temp*))))
87
88(defmacro Multiple-value-call (function &rest args)
89 (list 'apply function
90 (cons 'append
91 (mapcar (function (lambda (x) (list 'Multiple-value-list x)))
92 args))))
93
94(defmacro Multiple-value-bind (vars form &rest body)
95 (list* 'multiple-value-bind vars (list 'Multiple-value-list form) body))
96
97(defmacro Multiple-value-setq (vars form)
98 (list 'multiple-value-setq vars (list 'Multiple-value-list form)))
99
100(defmacro Multiple-value-prog1 (form &rest body)
101 (list 'prog1 form (list* 'let '((*mvalues-values* nil)) body)))
102
103
104;;; Routines for parsing keyword arguments.
105
106(defun build-klist (arglist keys &optional allow-others)
107 (let ((res (Multiple-value-call 'mapcar* 'cons (unzip-lists arglist))))
108 (or allow-others
109 (let ((bad (set-difference (mapcar 'car res) keys)))
110 (if bad (error "Bad keywords: %s not in %s" bad keys))))
111 res))
112
113(defun extract-from-klist (klist key &optional def)
114 (let ((res (assq key klist))) (if res (cdr res) def)))
115
116(defun keyword-argument-supplied-p (klist key)
117 (assq key klist))
118
119(defun elt-satisfies-test-p (item elt klist)
120 (let ((test-not (cdr (assq ':test-not klist)))
121 (test (cdr (assq ':test klist)))
122 (key (cdr (assq ':key klist))))
123 (if key (setq elt (funcall key elt)))
124 (if test-not (not (funcall test-not item elt))
125 (funcall (or test 'eql) item elt))))
126
127
128;;; Rounding functions with old-style multiple value returns.
129
130(defun cl-floor (a &optional b) (Values-list (floor* a b)))
131(defun cl-ceiling (a &optional b) (Values-list (ceiling* a b)))
132(defun cl-round (a &optional b) (Values-list (round* a b)))
133(defun cl-truncate (a &optional b) (Values-list (truncate* a b)))
134
135(defun safe-idiv (a b)
136 (let* ((q (/ (abs a) (abs b)))
137 (s (* (signum a) (signum b))))
138 (Values q (- a (* s q b)) s)))
139
140
141;; Internal routines.
142
143(defun pair-with-newsyms (oldforms)
144 (let ((newsyms (mapcar (function (lambda (x) (gensym))) oldforms)))
145 (Values (mapcar* 'list newsyms oldforms) newsyms)))
146
147(defun zip-lists (evens odds)
148 (mapcan 'list evens odds))
149
150(defun unzip-lists (list)
151 (let ((e nil) (o nil))
152 (while list
153 (setq e (cons (car list) e) o (cons (cadr list) o) list (cddr list)))
154 (Values (nreverse e) (nreverse o))))
155
156(defun reassemble-argslists (list)
157 (let ((n (apply 'min (mapcar 'length list))) (res nil))
158 (while (>= (setq n (1- n)) 0)
159 (setq res (cons (mapcar (function (lambda (x) (elt x n))) list) res)))
160 res))
161
162(defun duplicate-symbols-p (list)
163 (let ((res nil))
164 (while list
165 (if (memq (car list) (cdr list)) (setq res (cons (car list) res)))
166 (setq list (cdr list)))
167 res))
168
169
170;;; Setf internals.
171
172(defun setnth (n list x)
173 (setcar (nthcdr n list) x))
174
175(defun setnthcdr (n list x)
176 (setcdr (nthcdr (1- n) list) x))
177
178(defun setelt (seq n x)
179 (if (consp seq) (setcar (nthcdr n seq) x) (aset seq n x)))
180
181
182;;; Functions omitted: case-clausify, check-do-stepforms, check-do-endforms,
183;;; extract-do-inits, extract-do[*]-steps, select-stepping-forms,
184;;; elt-satisfies-if[-not]-p, with-keyword-args, mv-bind-clausify,
185;;; all names with embedded `$'.
186
187
188(provide 'cl-compat)
189
190;;; cl-compat.el ends here
191
diff --git a/lisp/emacs-lisp/cl-extra.el b/lisp/emacs-lisp/cl-extra.el
new file mode 100644
index 00000000000..5b1fcc49b3d
--- /dev/null
+++ b/lisp/emacs-lisp/cl-extra.el
@@ -0,0 +1,930 @@
1;; cl-extra.el --- Common Lisp extensions for GNU Emacs Lisp (part two)
2
3;; Copyright (C) 1993 Free Software Foundation, Inc.
4
5;; Author: Dave Gillespie <daveg@synaptics.com>
6;; Version: 2.02
7;; Keywords: extensions
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 1, or (at your option)
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING. If not, write to
23;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25;; Commentary:
26
27;; These are extensions to Emacs Lisp that provide a degree of
28;; Common Lisp compatibility, beyond what is already built-in
29;; in Emacs Lisp.
30;;
31;; This package was written by Dave Gillespie; it is a complete
32;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
33;;
34;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
35;;
36;; Bug reports, comments, and suggestions are welcome!
37
38;; This file contains portions of the Common Lisp extensions
39;; package which are autoloaded since they are relatively obscure.
40
41;; See cl.el for Change Log.
42
43
44;; Code:
45
46(or (memq 'cl-19 features)
47 (error "Tried to load `cl-extra' before `cl'!"))
48
49
50;;; We define these here so that this file can compile without having
51;;; loaded the cl.el file already.
52
53(defmacro cl-push (x place) (list 'setq place (list 'cons x place)))
54(defmacro cl-pop (place)
55 (list 'car (list 'prog1 place (list 'setq place (list 'cdr place)))))
56
57(defvar cl-emacs-type)
58
59
60;;; Type coercion.
61
62(defun coerce (x type)
63 "Coerce OBJECT to type TYPE.
64TYPE is a Common Lisp type specifier."
65 (cond ((eq type 'list) (if (listp x) x (append x nil)))
66 ((eq type 'vector) (if (vectorp x) x (vconcat x)))
67 ((eq type 'string) (if (stringp x) x (concat x)))
68 ((eq type 'array) (if (arrayp x) x (vconcat x)))
69 ((and (eq type 'character) (stringp x) (= (length x) 1)) (aref x 0))
70 ((and (eq type 'character) (symbolp x)) (coerce (symbol-name x) type))
71 ((eq type 'float) (float x))
72 ((typep x type) x)
73 (t (error "Can't coerce %s to type %s" x type))))
74
75
76;;; Predicates.
77
78(defun equalp (x y)
79 "T if two Lisp objects have similar structures and contents.
80This is like `equal', except that it accepts numerically equal
81numbers of different types (float vs. integer), and also compares
82strings case-insensitively."
83 (cond ((eq x y) t)
84 ((stringp x)
85 (and (stringp y) (= (length x) (length y))
86 (or (equal x y)
87 (equal (downcase x) (downcase y))))) ; lazy but simple!
88 ((numberp x)
89 (and (numberp y) (= x y)))
90 ((consp x)
91 (while (and (consp x) (consp y) (equalp (cl-pop x) (cl-pop y))))
92 (and (not (consp x)) (equalp x y)))
93 ((vectorp x)
94 (and (vectorp y) (= (length x) (length y))
95 (let ((i (length x)))
96 (while (and (>= (setq i (1- i)) 0)
97 (equalp (aref x i) (aref y i))))
98 (< i 0))))
99 (t (equal x y))))
100
101
102;;; Control structures.
103
104(defun cl-mapcar-many (cl-func cl-seqs)
105 (if (cdr (cdr cl-seqs))
106 (let* ((cl-res nil)
107 (cl-n (apply 'min (mapcar 'length cl-seqs)))
108 (cl-i 0)
109 (cl-args (copy-sequence cl-seqs))
110 cl-p1 cl-p2)
111 (setq cl-seqs (copy-sequence cl-seqs))
112 (while (< cl-i cl-n)
113 (setq cl-p1 cl-seqs cl-p2 cl-args)
114 (while cl-p1
115 (setcar cl-p2
116 (if (consp (car cl-p1))
117 (prog1 (car (car cl-p1))
118 (setcar cl-p1 (cdr (car cl-p1))))
119 (aref (car cl-p1) cl-i)))
120 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))
121 (cl-push (apply cl-func cl-args) cl-res)
122 (setq cl-i (1+ cl-i)))
123 (nreverse cl-res))
124 (let ((cl-res nil)
125 (cl-x (car cl-seqs))
126 (cl-y (nth 1 cl-seqs)))
127 (let ((cl-n (min (length cl-x) (length cl-y)))
128 (cl-i -1))
129 (while (< (setq cl-i (1+ cl-i)) cl-n)
130 (cl-push (funcall cl-func
131 (if (consp cl-x) (cl-pop cl-x) (aref cl-x cl-i))
132 (if (consp cl-y) (cl-pop cl-y) (aref cl-y cl-i)))
133 cl-res)))
134 (nreverse cl-res))))
135
136(defun map (cl-type cl-func cl-seq &rest cl-rest)
137 "Map a function across one or more sequences, returning a sequence.
138TYPE is the sequence type to return, FUNC is the function, and SEQS
139are the argument sequences."
140 (let ((cl-res (apply 'mapcar* cl-func cl-seq cl-rest)))
141 (and cl-type (coerce cl-res cl-type))))
142
143(defun maplist (cl-func cl-list &rest cl-rest)
144 "Map FUNC to each sublist of LIST or LISTS.
145Like `mapcar', except applies to lists and their cdr's rather than to
146the elements themselves."
147 (if cl-rest
148 (let ((cl-res nil)
149 (cl-args (cons cl-list (copy-sequence cl-rest)))
150 cl-p)
151 (while (not (memq nil cl-args))
152 (cl-push (apply cl-func cl-args) cl-res)
153 (setq cl-p cl-args)
154 (while cl-p (setcar cl-p (cdr (cl-pop cl-p)) )))
155 (nreverse cl-res))
156 (let ((cl-res nil))
157 (while cl-list
158 (cl-push (funcall cl-func cl-list) cl-res)
159 (setq cl-list (cdr cl-list)))
160 (nreverse cl-res))))
161
162(defun mapc (cl-func cl-seq &rest cl-rest)
163 "Like `mapcar', but does not accumulate values returned by the function."
164 (if cl-rest
165 (apply 'map nil cl-func cl-seq cl-rest)
166 (mapcar cl-func cl-seq))
167 cl-seq)
168
169(defun mapl (cl-func cl-list &rest cl-rest)
170 "Like `maplist', but does not accumulate values returned by the function."
171 (if cl-rest
172 (apply 'maplist cl-func cl-list cl-rest)
173 (let ((cl-p cl-list))
174 (while cl-p (funcall cl-func cl-p) (setq cl-p (cdr cl-p)))))
175 cl-list)
176
177(defun mapcan (cl-func cl-seq &rest cl-rest)
178 "Like `mapcar', but nconc's together the values returned by the function."
179 (apply 'nconc (apply 'mapcar* cl-func cl-seq cl-rest)))
180
181(defun mapcon (cl-func cl-list &rest cl-rest)
182 "Like `maplist', but nconc's together the values returned by the function."
183 (apply 'nconc (apply 'maplist cl-func cl-list cl-rest)))
184
185(defun some (cl-pred cl-seq &rest cl-rest)
186 "Return true if PREDICATE is true of any element of SEQ or SEQs.
187If so, return the true (non-nil) value returned by PREDICATE."
188 (if (or cl-rest (nlistp cl-seq))
189 (catch 'cl-some
190 (apply 'map nil
191 (function (lambda (&rest cl-x)
192 (let ((cl-res (apply cl-pred cl-x)))
193 (if cl-res (throw 'cl-some cl-res)))))
194 cl-seq cl-rest) nil)
195 (let ((cl-x nil))
196 (while (and cl-seq (not (setq cl-x (funcall cl-pred (cl-pop cl-seq))))))
197 cl-x)))
198
199(defun every (cl-pred cl-seq &rest cl-rest)
200 "Return true if PREDICATE is true of every element of SEQ or SEQs."
201 (if (or cl-rest (nlistp cl-seq))
202 (catch 'cl-every
203 (apply 'map nil
204 (function (lambda (&rest cl-x)
205 (or (apply cl-pred cl-x) (throw 'cl-every nil))))
206 cl-seq cl-rest) t)
207 (while (and cl-seq (funcall cl-pred (car cl-seq)))
208 (setq cl-seq (cdr cl-seq)))
209 (null cl-seq)))
210
211(defun notany (cl-pred cl-seq &rest cl-rest)
212 "Return true if PREDICATE is false of every element of SEQ or SEQs."
213 (not (apply 'some cl-pred cl-seq cl-rest)))
214
215(defun notevery (cl-pred cl-seq &rest cl-rest)
216 "Return true if PREDICATE is false of some element of SEQ or SEQs."
217 (not (apply 'every cl-pred cl-seq cl-rest)))
218
219;;; Support for `loop'.
220(defun cl-map-keymap (cl-func cl-map)
221 (while (symbolp cl-map) (setq cl-map (symbol-function cl-map)))
222 (if (eq cl-emacs-type 'lucid) (funcall 'map-keymap cl-func cl-map)
223 (if (listp cl-map)
224 (let ((cl-p cl-map))
225 (while (consp (setq cl-p (cdr cl-p)))
226 (cond ((consp (car cl-p))
227 (funcall cl-func (car (car cl-p)) (cdr (car cl-p))))
228 ((vectorp (car cl-p))
229 (cl-map-keymap cl-func (car cl-p)))
230 ((eq (car cl-p) 'keymap)
231 (setq cl-p nil)))))
232 (let ((cl-i -1))
233 (while (< (setq cl-i (1+ cl-i)) (length cl-map))
234 (if (aref cl-map cl-i)
235 (funcall cl-func cl-i (aref cl-map cl-i))))))))
236
237(defun cl-map-keymap-recursively (cl-func-rec cl-map &optional cl-base)
238 (or cl-base
239 (setq cl-base (copy-sequence (if (eq cl-emacs-type 18) "0" [0]))))
240 (cl-map-keymap
241 (function
242 (lambda (cl-key cl-bind)
243 (aset cl-base (1- (length cl-base)) cl-key)
244 (if (keymapp cl-bind)
245 (cl-map-keymap-recursively
246 cl-func-rec cl-bind
247 (funcall (if (eq cl-emacs-type 18) 'concat 'vconcat)
248 cl-base (list 0)))
249 (funcall cl-func-rec cl-base cl-bind))))
250 cl-map))
251
252(defun cl-map-intervals (cl-func &optional cl-what cl-prop cl-start cl-end)
253 (or cl-what (setq cl-what (current-buffer)))
254 (if (bufferp cl-what)
255 (let (cl-mark cl-mark2 (cl-next t) cl-next2)
256 (save-excursion
257 (set-buffer cl-what)
258 (setq cl-mark (copy-marker (or cl-start (point-min))))
259 (setq cl-mark2 (and cl-end (copy-marker cl-end))))
260 (while (and cl-next (or (not cl-mark2) (< cl-mark cl-mark2)))
261 (setq cl-next (and (fboundp 'next-property-change)
262 (if cl-prop (next-single-property-change
263 cl-mark cl-prop cl-what)
264 (next-property-change cl-mark cl-what)))
265 cl-next2 (or cl-next (save-excursion
266 (set-buffer cl-what) (point-max))))
267 (funcall cl-func (prog1 (marker-position cl-mark)
268 (set-marker cl-mark cl-next2))
269 (if cl-mark2 (min cl-next2 cl-mark2) cl-next2)))
270 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))
271 (or cl-start (setq cl-start 0))
272 (or cl-end (setq cl-end (length cl-what)))
273 (while (< cl-start cl-end)
274 (let ((cl-next (or (and (fboundp 'next-property-change)
275 (if cl-prop (next-single-property-change
276 cl-start cl-prop cl-what)
277 (next-property-change cl-start cl-what)))
278 cl-end)))
279 (funcall cl-func cl-start (min cl-next cl-end))
280 (setq cl-start cl-next)))))
281
282(defun cl-map-overlays (cl-func &optional cl-buffer cl-start cl-end cl-arg)
283 (or cl-buffer (setq cl-buffer (current-buffer)))
284 (if (fboundp 'overlay-lists)
285
286 ;; This is the preferred algorithm, though overlay-lists is undocumented.
287 (let (cl-ovl)
288 (save-excursion
289 (set-buffer cl-buffer)
290 (setq cl-ovl (overlay-lists))
291 (if cl-start (setq cl-start (copy-marker cl-start)))
292 (if cl-end (setq cl-end (copy-marker cl-end))))
293 (setq cl-ovl (nconc (car cl-ovl) (cdr cl-ovl)))
294 (while (and cl-ovl
295 (or (not (overlay-start (car cl-ovl)))
296 (and cl-end (>= (overlay-start (car cl-ovl)) cl-end))
297 (and cl-start (<= (overlay-end (car cl-ovl)) cl-start))
298 (not (funcall cl-func (car cl-ovl) cl-arg))))
299 (setq cl-ovl (cdr cl-ovl)))
300 (if cl-start (set-marker cl-start nil))
301 (if cl-end (set-marker cl-end nil)))
302
303 ;; This alternate algorithm fails to find zero-length overlays.
304 (let ((cl-mark (save-excursion (set-buffer cl-buffer)
305 (copy-marker (or cl-start (point-min)))))
306 (cl-mark2 (and cl-end (save-excursion (set-buffer cl-buffer)
307 (copy-marker cl-end))))
308 cl-pos cl-ovl)
309 (while (save-excursion
310 (and (setq cl-pos (marker-position cl-mark))
311 (< cl-pos (or cl-mark2 (point-max)))
312 (progn
313 (set-buffer cl-buffer)
314 (setq cl-ovl (overlays-at cl-pos))
315 (set-marker cl-mark (next-overlay-change cl-pos)))))
316 (while (and cl-ovl
317 (or (/= (overlay-start (car cl-ovl)) cl-pos)
318 (not (and (funcall cl-func (car cl-ovl) cl-arg)
319 (set-marker cl-mark nil)))))
320 (setq cl-ovl (cdr cl-ovl))))
321 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))))
322
323;;; Support for `setf'.
324(defun cl-set-frame-visible-p (frame val)
325 (cond ((null val) (make-frame-invisible frame))
326 ((eq val 'icon) (iconify-frame frame))
327 (t (make-frame-visible frame)))
328 val)
329
330;;; Support for `progv'.
331(defvar cl-progv-save)
332(defun cl-progv-before (syms values)
333 (while syms
334 (cl-push (if (boundp (car syms))
335 (cons (car syms) (symbol-value (car syms)))
336 (car syms)) cl-progv-save)
337 (if values
338 (set (cl-pop syms) (cl-pop values))
339 (makunbound (cl-pop syms)))))
340
341(defun cl-progv-after ()
342 (while cl-progv-save
343 (if (consp (car cl-progv-save))
344 (set (car (car cl-progv-save)) (cdr (car cl-progv-save)))
345 (makunbound (car cl-progv-save)))
346 (cl-pop cl-progv-save)))
347
348
349;;; Numbers.
350
351(defun gcd (&rest args)
352 "Return the greatest common divisor of the arguments."
353 (let ((a (abs (or (cl-pop args) 0))))
354 (while args
355 (let ((b (abs (cl-pop args))))
356 (while (> b 0) (setq b (% a (setq a b))))))
357 a))
358
359(defun lcm (&rest args)
360 "Return the least common multiple of the arguments."
361 (if (memq 0 args)
362 0
363 (let ((a (abs (or (cl-pop args) 1))))
364 (while args
365 (let ((b (abs (cl-pop args))))
366 (setq a (* (/ a (gcd a b)) b))))
367 a)))
368
369(defun isqrt (a)
370 "Return the integer square root of the argument."
371 (if (and (integerp a) (> a 0))
372 (let ((g (cond ((>= a 1000000) 10000) ((>= a 10000) 1000)
373 ((>= a 100) 100) (t 10)))
374 g2)
375 (while (< (setq g2 (/ (+ g (/ a g)) 2)) g)
376 (setq g g2))
377 g)
378 (if (eq a 0) 0 (signal 'arith-error nil))))
379
380(defun cl-expt (x y)
381 "Return X raised to the power of Y. Works only for integer arguments."
382 (if (<= y 0) (if (= y 0) 1 (if (memq x '(-1 1)) x 0))
383 (* (if (= (% y 2) 0) 1 x) (cl-expt (* x x) (/ y 2)))))
384(or (and (fboundp 'expt) (subrp (symbol-function 'expt)))
385 (defalias 'expt 'cl-expt))
386
387(defun floor* (x &optional y)
388 "Return a list of the floor of X and the fractional part of X.
389With two arguments, return floor and remainder of their quotient."
390 (if y
391 (if (and (integerp x) (integerp y))
392 (if (and (>= x 0) (>= y 0))
393 (list (/ x y) (% x y))
394 (let ((q (cond ((>= x 0) (- (/ (- x y 1) (- y))))
395 ((>= y 0) (- (/ (- y x 1) y)))
396 (t (/ (- x) (- y))))))
397 (list q (- x (* q y)))))
398 (let ((q (floor (/ x y))))
399 (list q (- x (* q y)))))
400 (if (integerp x) (list x 0)
401 (let ((q (floor x)))
402 (list q (- x q))))))
403
404(defun ceiling* (x &optional y)
405 "Return a list of the ceiling of X and the fractional part of X.
406With two arguments, return ceiling and remainder of their quotient."
407 (let ((res (floor* x y)))
408 (if (= (car (cdr res)) 0) res
409 (list (1+ (car res)) (- (car (cdr res)) (or y 1))))))
410
411(defun truncate* (x &optional y)
412 "Return a list of the integer part of X and the fractional part of X.
413With two arguments, return truncation and remainder of their quotient."
414 (if (eq (>= x 0) (or (null y) (>= y 0)))
415 (floor* x y) (ceiling* x y)))
416
417(defun round* (x &optional y)
418 "Return a list of X rounded to the nearest integer and the remainder.
419With two arguments, return rounding and remainder of their quotient."
420 (if y
421 (if (and (integerp x) (integerp y))
422 (let* ((hy (/ y 2))
423 (res (floor* (+ x hy) y)))
424 (if (and (= (car (cdr res)) 0)
425 (= (+ hy hy) y)
426 (/= (% (car res) 2) 0))
427 (list (1- (car res)) hy)
428 (list (car res) (- (car (cdr res)) hy))))
429 (let ((q (round (/ x y))))
430 (list q (- x (* q y)))))
431 (if (integerp x) (list x 0)
432 (let ((q (round x)))
433 (list q (- x q))))))
434
435(defun mod* (x y)
436 "The remainder of X divided by Y, with the same sign as Y."
437 (nth 1 (floor* x y)))
438
439(defun rem* (x y)
440 "The remainder of X divided by Y, with the same sign as X."
441 (nth 1 (truncate* x y)))
442
443(defun signum (a)
444 "Return 1 if A is positive, -1 if negative, 0 if zero."
445 (cond ((> a 0) 1) ((< a 0) -1) (t 0)))
446
447
448;; Random numbers.
449
450(defvar *random-state*)
451(defun random* (lim &optional state)
452 "Return a random nonnegative number less than LIM, an integer or float.
453Optional second arg STATE is a random-state object."
454 (or state (setq state *random-state*))
455 ;; Inspired by "ran3" from Numerical Recipes. Additive congruential method.
456 (let ((vec (aref state 3)))
457 (if (integerp vec)
458 (let ((i 0) (j (- 1357335 (% (abs vec) 1357333))) (k 1) ii)
459 (aset state 3 (setq vec (make-vector 55 nil)))
460 (aset vec 0 j)
461 (while (> (setq i (% (+ i 21) 55)) 0)
462 (aset vec i (setq j (prog1 k (setq k (- j k))))))
463 (while (< (setq i (1+ i)) 200) (random* 2 state))))
464 (let* ((i (aset state 1 (% (1+ (aref state 1)) 55)))
465 (j (aset state 2 (% (1+ (aref state 2)) 55)))
466 (n (logand 8388607 (aset vec i (- (aref vec i) (aref vec j))))))
467 (if (integerp lim)
468 (if (<= lim 512) (% n lim)
469 (if (> lim 8388607) (setq n (+ (lsh n 9) (random* 512 state))))
470 (let ((mask 1023))
471 (while (< mask (1- lim)) (setq mask (1+ (+ mask mask))))
472 (if (< (setq n (logand n mask)) lim) n (random* lim state))))
473 (* (/ n '8388608e0) lim)))))
474
475(defun make-random-state (&optional state)
476 "Return a copy of random-state STATE, or of `*random-state*' if omitted.
477If STATE is t, return a new state object seeded from the time of day."
478 (cond ((null state) (make-random-state *random-state*))
479 ((vectorp state) (cl-copy-tree state t))
480 ((integerp state) (vector 'cl-random-state-tag -1 30 state))
481 (t (make-random-state (cl-random-time)))))
482
483(defun random-state-p (object)
484 "Return t if OBJECT is a random-state object."
485 (and (vectorp object) (= (length object) 4)
486 (eq (aref object 0) 'cl-random-state-tag)))
487
488
489;; Implementation limits.
490
491(defun cl-finite-do (func a b)
492 (condition-case err
493 (let ((res (funcall func a b))) ; check for IEEE infinity
494 (and (numberp res) (/= res (/ res 2)) res))
495 (arith-error nil)))
496
497(defvar most-positive-float)
498(defvar most-negative-float)
499(defvar least-positive-float)
500(defvar least-negative-float)
501(defvar least-positive-normalized-float)
502(defvar least-negative-normalized-float)
503(defvar float-epsilon)
504(defvar float-negative-epsilon)
505
506(defun cl-float-limits ()
507 (or most-positive-float (not (numberp '2e1))
508 (let ((x '2e0) y z)
509 ;; Find maximum exponent (first two loops are optimizations)
510 (while (cl-finite-do '* x x) (setq x (* x x)))
511 (while (cl-finite-do '* x (/ x 2)) (setq x (* x (/ x 2))))
512 (while (cl-finite-do '+ x x) (setq x (+ x x)))
513 (setq z x y (/ x 2))
514 ;; Now fill in 1's in the mantissa.
515 (while (and (cl-finite-do '+ x y) (/= (+ x y) x))
516 (setq x (+ x y) y (/ y 2)))
517 (setq most-positive-float x
518 most-negative-float (- x))
519 ;; Divide down until mantissa starts rounding.
520 (setq x (/ x z) y (/ 16 z) x (* x y))
521 (while (condition-case err (and (= x (* (/ x 2) 2)) (> (/ y 2) 0))
522 (arith-error nil))
523 (setq x (/ x 2) y (/ y 2)))
524 (setq least-positive-normalized-float y
525 least-negative-normalized-float (- y))
526 ;; Divide down until value underflows to zero.
527 (setq x (/ 1 z) y x)
528 (while (condition-case err (> (/ x 2) 0) (arith-error nil))
529 (setq x (/ x 2)))
530 (setq least-positive-float x
531 least-negative-float (- x))
532 (setq x '1e0)
533 (while (/= (+ '1e0 x) '1e0) (setq x (/ x 2)))
534 (setq float-epsilon (* x 2))
535 (setq x '1e0)
536 (while (/= (- '1e0 x) '1e0) (setq x (/ x 2)))
537 (setq float-negative-epsilon (* x 2))))
538 nil)
539
540
541;;; Sequence functions.
542
543(defun subseq (seq start &optional end)
544 "Return the subsequence of SEQ from START to END.
545If END is omitted, it defaults to the length of the sequence.
546If START or END is negative, it counts from the end."
547 (if (stringp seq) (substring seq start end)
548 (let (len)
549 (and end (< end 0) (setq end (+ end (setq len (length seq)))))
550 (if (< start 0) (setq start (+ start (or len (setq len (length seq))))))
551 (cond ((listp seq)
552 (if (> start 0) (setq seq (nthcdr start seq)))
553 (if end
554 (let ((res nil))
555 (while (>= (setq end (1- end)) start)
556 (cl-push (cl-pop seq) res))
557 (nreverse res))
558 (copy-sequence seq)))
559 (t
560 (or end (setq end (or len (length seq))))
561 (let ((res (make-vector (max (- end start) 0) nil))
562 (i 0))
563 (while (< start end)
564 (aset res i (aref seq start))
565 (setq i (1+ i) start (1+ start)))
566 res))))))
567
568(defun concatenate (type &rest seqs)
569 "Concatenate, into a sequence of type TYPE, the argument SEQUENCES."
570 (cond ((eq type 'vector) (apply 'vconcat seqs))
571 ((eq type 'string) (apply 'concat seqs))
572 ((eq type 'list) (apply 'append (append seqs '(nil))))
573 (t (error "Not a sequence type name: %s" type))))
574
575
576;;; List functions.
577
578(defun revappend (x y)
579 "Equivalent to (append (reverse X) Y)."
580 (nconc (reverse x) y))
581
582(defun nreconc (x y)
583 "Equivalent to (nconc (nreverse X) Y)."
584 (nconc (nreverse x) y))
585
586(defun list-length (x)
587 "Return the length of a list. Return nil if list is circular."
588 (let ((n 0) (fast x) (slow x))
589 (while (and (cdr fast) (not (and (eq fast slow) (> n 0))))
590 (setq n (+ n 2) fast (cdr (cdr fast)) slow (cdr slow)))
591 (if fast (if (cdr fast) nil (1+ n)) n)))
592
593(defun tailp (sublist list)
594 "Return true if SUBLIST is a tail of LIST."
595 (while (and (consp list) (not (eq sublist list)))
596 (setq list (cdr list)))
597 (if (numberp sublist) (equal sublist list) (eq sublist list)))
598
599(defun cl-copy-tree (tree &optional vecp)
600 "Make a copy of TREE.
601If TREE is a cons cell, this recursively copies both its car and its cdr.
602Constrast to copy-sequence, which copies only along the cdrs. With second
603argument VECP, this copies vectors as well as conses."
604 (if (consp tree)
605 (let ((p (setq tree (copy-list tree))))
606 (while (consp p)
607 (if (or (consp (car p)) (and vecp (vectorp (car p))))
608 (setcar p (cl-copy-tree (car p) vecp)))
609 (or (listp (cdr p)) (setcdr p (cl-copy-tree (cdr p) vecp)))
610 (cl-pop p)))
611 (if (and vecp (vectorp tree))
612 (let ((i (length (setq tree (copy-sequence tree)))))
613 (while (>= (setq i (1- i)) 0)
614 (aset tree i (cl-copy-tree (aref tree i) vecp))))))
615 tree)
616(or (and (fboundp 'copy-tree) (subrp (symbol-function 'copy-tree)))
617 (defalias 'copy-tree 'cl-copy-tree))
618
619
620;;; Property lists.
621
622(defun get* (sym tag &optional def) ; See compiler macro in cl-macs.el
623 "Return the value of SYMBOL's PROPNAME property, or DEFAULT if none."
624 (or (get sym tag)
625 (and def
626 (let ((plist (symbol-plist sym)))
627 (while (and plist (not (eq (car plist) tag)))
628 (setq plist (cdr (cdr plist))))
629 (if plist (car (cdr plist)) def)))))
630
631(defun getf (plist tag &optional def)
632 "Search PROPLIST for property PROPNAME; return its value or DEFAULT.
633PROPLIST is a list of the sort returned by `symbol-plist'."
634 (setplist '--cl-getf-symbol-- plist)
635 (or (get '--cl-getf-symbol-- tag)
636 (and def (get* '--cl-getf-symbol-- tag def))))
637
638(defun cl-set-getf (plist tag val)
639 (let ((p plist))
640 (while (and p (not (eq (car p) tag))) (setq p (cdr (cdr p))))
641 (if p (progn (setcar (cdr p) val) plist) (list* tag val plist))))
642
643(defun cl-do-remf (plist tag)
644 (let ((p (cdr plist)))
645 (while (and (cdr p) (not (eq (car (cdr p)) tag))) (setq p (cdr (cdr p))))
646 (and (cdr p) (progn (setcdr p (cdr (cdr (cdr p)))) t))))
647
648(defun cl-remprop (sym tag)
649 "Remove from SYMBOL's plist the property PROP and its value."
650 (let ((plist (symbol-plist sym)))
651 (if (and plist (eq tag (car plist)))
652 (progn (setplist sym (cdr (cdr plist))) t)
653 (cl-do-remf plist tag))))
654(or (and (fboundp 'remprop) (subrp (symbol-function 'remprop)))
655 (defalias 'remprop 'cl-remprop))
656
657
658
659;;; Hash tables.
660
661(defun make-hash-table (&rest cl-keys)
662 "Make an empty Common Lisp-style hash-table.
663If :test is `eq', this can use Lucid Emacs built-in hash-tables.
664In non-Lucid Emacs, or with non-`eq' test, this internally uses a-lists.
665Keywords supported: :test :size
666The Common Lisp keywords :rehash-size and :rehash-threshold are ignored."
667 (let ((cl-test (or (car (cdr (memq ':test cl-keys))) 'eql))
668 (cl-size (or (car (cdr (memq ':size cl-keys))) 20)))
669 (if (and (eq cl-test 'eq) (fboundp 'make-hashtable))
670 (funcall 'make-hashtable cl-size)
671 (list 'cl-hash-table-tag cl-test
672 (if (> cl-size 1) (make-vector cl-size 0)
673 (let ((sym (make-symbol "--hashsym--"))) (set sym nil) sym))
674 0))))
675
676(defvar cl-lucid-hash-tag
677 (if (and (fboundp 'make-hashtable) (vectorp (make-hashtable 1)))
678 (aref (make-hashtable 1) 0) (make-symbol "--cl-hash-tag--")))
679
680(defun hash-table-p (x)
681 "Return t if OBJECT is a hash table."
682 (or (eq (car-safe x) 'cl-hash-table-tag)
683 (and (vectorp x) (= (length x) 4) (eq (aref x 0) cl-lucid-hash-tag))
684 (and (fboundp 'hashtablep) (funcall 'hashtablep x))))
685
686(defun cl-not-hash-table (x &optional y &rest z)
687 (signal 'wrong-type-argument (list 'hash-table-p (or y x))))
688
689(defun cl-hash-lookup (key table)
690 (or (eq (car-safe table) 'cl-hash-table-tag) (cl-not-hash-table table))
691 (let* ((array (nth 2 table)) (test (car (cdr table))) (str key) sym)
692 (if (symbolp array) (setq str nil sym (symbol-value array))
693 (while (or (consp str) (and (vectorp str) (> (length str) 0)))
694 (setq str (elt str 0)))
695 (cond ((stringp str) (if (eq test 'equalp) (setq str (downcase str))))
696 ((symbolp str) (setq str (symbol-name str)))
697 ((and (numberp str) (> str -8000000) (< str 8000000))
698 (or (integerp str) (setq str (truncate str)))
699 (setq str (aref ["0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
700 "11" "12" "13" "14" "15"] (logand str 15))))
701 (t (setq str "*")))
702 (setq sym (symbol-value (intern-soft str array))))
703 (list (and sym (cond ((or (eq test 'eq)
704 (and (eq test 'eql) (not (numberp key))))
705 (assq key sym))
706 ((memq test '(eql equal)) (assoc key sym))
707 (t (assoc* key sym ':test test))))
708 sym str)))
709
710(defvar cl-builtin-gethash
711 (if (and (fboundp 'gethash) (subrp (symbol-function 'gethash)))
712 (symbol-function 'gethash) 'cl-not-hash-table))
713(defvar cl-builtin-remhash
714 (if (and (fboundp 'remhash) (subrp (symbol-function 'remhash)))
715 (symbol-function 'remhash) 'cl-not-hash-table))
716(defvar cl-builtin-clrhash
717 (if (and (fboundp 'clrhash) (subrp (symbol-function 'clrhash)))
718 (symbol-function 'clrhash) 'cl-not-hash-table))
719(defvar cl-builtin-maphash
720 (if (and (fboundp 'maphash) (subrp (symbol-function 'maphash)))
721 (symbol-function 'maphash) 'cl-not-hash-table))
722
723(defun cl-gethash (key table &optional def)
724 "Look up KEY in HASH-TABLE; return corresponding value, or DEFAULT."
725 (if (consp table)
726 (let ((found (cl-hash-lookup key table)))
727 (if (car found) (cdr (car found)) def))
728 (funcall cl-builtin-gethash key table def)))
729(defalias 'gethash 'cl-gethash)
730
731(defun cl-puthash (key val table)
732 (if (consp table)
733 (let ((found (cl-hash-lookup key table)))
734 (if (car found) (setcdr (car found) val)
735 (if (nth 2 found)
736 (progn
737 (if (> (nth 3 table) (* (length (nth 2 table)) 3))
738 (let ((new-table (make-vector (nth 3 table) 0)))
739 (mapatoms (function
740 (lambda (sym)
741 (set (intern (symbol-name sym) new-table)
742 (symbol-value sym))))
743 (nth 2 table))
744 (setcar (cdr (cdr table)) new-table)))
745 (set (intern (nth 2 found) (nth 2 table))
746 (cons (cons key val) (nth 1 found))))
747 (set (nth 2 table) (cons (cons key val) (nth 1 found))))
748 (setcar (cdr (cdr (cdr table))) (1+ (nth 3 table)))))
749 (funcall 'puthash key val table)) val)
750
751(defun cl-remhash (key table)
752 "Remove KEY from HASH-TABLE."
753 (if (consp table)
754 (let ((found (cl-hash-lookup key table)))
755 (and (car found)
756 (let ((del (delq (car found) (nth 1 found))))
757 (setcar (cdr (cdr (cdr table))) (1- (nth 3 table)))
758 (if (nth 2 found) (set (intern (nth 2 found) (nth 2 table)) del)
759 (set (nth 2 table) del)) t)))
760 (prog1 (not (eq (funcall cl-builtin-gethash key table '--cl--) '--cl--))
761 (funcall cl-builtin-remhash key table))))
762(defalias 'remhash 'cl-remhash)
763
764(defun cl-clrhash (table)
765 "Clear HASH-TABLE."
766 (if (consp table)
767 (progn
768 (or (hash-table-p table) (cl-not-hash-table table))
769 (if (symbolp (nth 2 table)) (set (nth 2 table) nil)
770 (setcar (cdr (cdr table)) (make-vector (length (nth 2 table)) 0)))
771 (setcar (cdr (cdr (cdr table))) 0))
772 (funcall cl-builtin-clrhash table))
773 nil)
774(defalias 'clrhash 'cl-clrhash)
775
776(defun cl-maphash (cl-func cl-table)
777 "Call FUNCTION on keys and values from HASH-TABLE."
778 (or (hash-table-p cl-table) (cl-not-hash-table cl-table))
779 (if (consp cl-table)
780 (mapatoms (function (lambda (cl-x)
781 (setq cl-x (symbol-value cl-x))
782 (while cl-x
783 (funcall cl-func (car (car cl-x))
784 (cdr (car cl-x)))
785 (setq cl-x (cdr cl-x)))))
786 (if (symbolp (nth 2 cl-table))
787 (vector (nth 2 cl-table)) (nth 2 cl-table)))
788 (funcall cl-builtin-maphash cl-func cl-table)))
789(defalias 'maphash 'cl-maphash)
790
791(defun hash-table-count (table)
792 "Return the number of entries in HASH-TABLE."
793 (or (hash-table-p table) (cl-not-hash-table table))
794 (if (consp table) (nth 3 table) (funcall 'hashtable-fullness table)))
795
796
797;;; Some debugging aids.
798
799(defun cl-prettyprint (form)
800 "Insert a pretty-printed rendition of a Lisp FORM in current buffer."
801 (let ((pt (point)) last)
802 (insert "\n" (prin1-to-string form) "\n")
803 (setq last (point))
804 (goto-char (1+ pt))
805 (while (search-forward "(quote " last t)
806 (delete-backward-char 7)
807 (insert "'")
808 (forward-sexp)
809 (delete-char 1))
810 (goto-char (1+ pt))
811 (cl-do-prettyprint)))
812
813(defun cl-do-prettyprint ()
814 (skip-chars-forward " ")
815 (if (looking-at "(")
816 (let ((skip (or (looking-at "((") (looking-at "(prog")
817 (looking-at "(unwind-protect ")
818 (looking-at "(function (")
819 (looking-at "(cl-block-wrapper ")))
820 (two (or (looking-at "(defun ") (looking-at "(defmacro ")))
821 (let (or (looking-at "(let\\*? ") (looking-at "(while ")))
822 (set (looking-at "(p?set[qf] ")))
823 (if (or skip let
824 (progn
825 (forward-sexp)
826 (and (>= (current-column) 78) (progn (backward-sexp) t))))
827 (let ((nl t))
828 (forward-char 1)
829 (cl-do-prettyprint)
830 (or skip (looking-at ")") (cl-do-prettyprint))
831 (or (not two) (looking-at ")") (cl-do-prettyprint))
832 (while (not (looking-at ")"))
833 (if set (setq nl (not nl)))
834 (if nl (insert "\n"))
835 (lisp-indent-line)
836 (cl-do-prettyprint))
837 (forward-char 1))))
838 (forward-sexp)))
839
840(defvar cl-macroexpand-cmacs nil)
841(defvar cl-closure-vars nil)
842
843(defun cl-macroexpand-all (form &optional env)
844 "Expand all macro calls through a Lisp FORM.
845This also does some trivial optimizations to make the form prettier."
846 (while (or (not (eq form (setq form (macroexpand form env))))
847 (and cl-macroexpand-cmacs
848 (not (eq form (setq form (compiler-macroexpand form)))))))
849 (cond ((not (consp form)) form)
850 ((memq (car form) '(let let*))
851 (if (null (nth 1 form))
852 (cl-macroexpand-all (cons 'progn (cddr form)) env)
853 (let ((letf nil) (res nil) (lets (cadr form)))
854 (while lets
855 (cl-push (if (consp (car lets))
856 (let ((exp (cl-macroexpand-all (caar lets) env)))
857 (or (symbolp exp) (setq letf t))
858 (cons exp (cl-macroexpand-body (cdar lets) env)))
859 (let ((exp (cl-macroexpand-all (car lets) env)))
860 (if (symbolp exp) exp
861 (setq letf t) (list exp nil)))) res)
862 (setq lets (cdr lets)))
863 (list* (if letf (if (eq (car form) 'let) 'letf 'letf*) (car form))
864 (nreverse res) (cl-macroexpand-body (cddr form) env)))))
865 ((eq (car form) 'cond)
866 (cons (car form)
867 (mapcar (function (lambda (x) (cl-macroexpand-body x env)))
868 (cdr form))))
869 ((eq (car form) 'condition-case)
870 (list* (car form) (nth 1 form) (cl-macroexpand-all (nth 2 form) env)
871 (mapcar (function
872 (lambda (x)
873 (cons (car x) (cl-macroexpand-body (cdr x) env))))
874 (cdddr form))))
875 ((memq (car form) '(quote function))
876 (if (eq (car-safe (nth 1 form)) 'lambda)
877 (let ((body (cl-macroexpand-body (cddadr form) env)))
878 (if (and cl-closure-vars (eq (car form) 'function)
879 (cl-expr-contains-any body cl-closure-vars))
880 (let* ((new (mapcar 'gensym cl-closure-vars))
881 (sub (pairlis cl-closure-vars new)) (decls nil))
882 (while (or (stringp (car body))
883 (eq (car-safe (car body)) 'interactive))
884 (cl-push (list 'quote (cl-pop body)) decls))
885 (put (car (last cl-closure-vars)) 'used t)
886 (append
887 (list 'list '(quote lambda) '(quote (&rest --cl-rest--)))
888 (sublis sub (nreverse decls))
889 (list
890 (list* 'list '(quote apply)
891 (list 'list '(quote quote)
892 (list 'function
893 (list* 'lambda
894 (append new (cadadr form))
895 (sublis sub body))))
896 (nconc (mapcar (function
897 (lambda (x)
898 (list 'list '(quote quote) x)))
899 cl-closure-vars)
900 '((quote --cl-rest--)))))))
901 (list (car form) (list* 'lambda (cadadr form) body))))
902 form))
903 ((memq (car form) '(defun defmacro))
904 (list* (car form) (nth 1 form) (cl-macroexpand-body (cddr form) env)))
905 ((and (eq (car form) 'progn) (not (cddr form)))
906 (cl-macroexpand-all (nth 1 form) env))
907 ((eq (car form) 'setq)
908 (let* ((args (cl-macroexpand-body (cdr form) env)) (p args))
909 (while (and p (symbolp (car p))) (setq p (cddr p)))
910 (if p (cl-macroexpand-all (cons 'setf args)) (cons 'setq args))))
911 (t (cons (car form) (cl-macroexpand-body (cdr form) env)))))
912
913(defun cl-macroexpand-body (body &optional env)
914 (mapcar (function (lambda (x) (cl-macroexpand-all x env))) body))
915
916(defun cl-prettyexpand (form &optional full)
917 (message "Expanding...")
918 (let ((cl-macroexpand-cmacs full) (cl-compiling-file full)
919 (byte-compile-macro-environment nil))
920 (setq form (cl-macroexpand-all form
921 (and (not full) '((block) (eval-when)))))
922 (message "Formatting...")
923 (prog1 (cl-prettyprint form)
924 (message ""))))
925
926
927
928(run-hooks 'cl-extra-load-hook)
929
930;;; cl-extra.el ends here
diff --git a/lisp/emacs-lisp/cl-macs.el b/lisp/emacs-lisp/cl-macs.el
new file mode 100644
index 00000000000..552bf0db465
--- /dev/null
+++ b/lisp/emacs-lisp/cl-macs.el
@@ -0,0 +1,2610 @@
1;; cl-macs.el --- Common Lisp extensions for GNU Emacs Lisp (part four)
2
3;; Copyright (C) 1993 Free Software Foundation, Inc.
4
5;; Author: Dave Gillespie <daveg@synaptics.com>
6;; Version: 2.02
7;; Keywords: extensions
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 1, or (at your option)
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING. If not, write to
23;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25;; Commentary:
26
27;; These are extensions to Emacs Lisp that provide a degree of
28;; Common Lisp compatibility, beyond what is already built-in
29;; in Emacs Lisp.
30;;
31;; This package was written by Dave Gillespie; it is a complete
32;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
33;;
34;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
35;;
36;; Bug reports, comments, and suggestions are welcome!
37
38;; This file contains the portions of the Common Lisp extensions
39;; package which should be autoloaded, but need only be present
40;; if the compiler or interpreter is used---this file is not
41;; necessary for executing compiled code.
42
43;; See cl.el for Change Log.
44
45
46;; Code:
47
48(or (memq 'cl-19 features)
49 (error "Tried to load `cl-macs' before `cl'!"))
50
51
52;;; We define these here so that this file can compile without having
53;;; loaded the cl.el file already.
54
55(defmacro cl-push (x place) (list 'setq place (list 'cons x place)))
56(defmacro cl-pop (place)
57 (list 'car (list 'prog1 place (list 'setq place (list 'cdr place)))))
58(defmacro cl-pop2 (place)
59 (list 'prog1 (list 'car (list 'cdr place))
60 (list 'setq place (list 'cdr (list 'cdr place)))))
61(put 'cl-push 'edebug-form-spec 'edebug-sexps)
62(put 'cl-pop 'edebug-form-spec 'edebug-sexps)
63(put 'cl-pop2 'edebug-form-spec 'edebug-sexps)
64
65(defvar cl-emacs-type)
66(defvar cl-optimize-safety)
67(defvar cl-optimize-speed)
68
69
70;;; This kludge allows macros which use cl-transform-function-property
71;;; to be called at compile-time.
72
73(require
74 (progn
75 (or (fboundp 'defalias) (fset 'defalias 'fset))
76 (or (fboundp 'cl-transform-function-property)
77 (defalias 'cl-transform-function-property
78 (function (lambda (n p f)
79 (list 'put (list 'quote n) (list 'quote p)
80 (list 'function (cons 'lambda f)))))))
81 (car (or features (setq features (list 'cl-kludge))))))
82
83
84;;; Initialization.
85
86(defvar cl-old-bc-file-form nil)
87
88;; Patch broken Emacs 18 compiler (re top-level macros).
89;; Emacs 19 compiler doesn't need this patch.
90;; Also, undo broken definition of `eql' that uses same bytecode as `eq'.
91(defun cl-compile-time-init ()
92 (setq cl-old-bc-file-form (symbol-function 'byte-compile-file-form))
93 (or (fboundp 'byte-compile-flush-pending) ; Emacs 19 compiler?
94 (defalias 'byte-compile-file-form
95 (function
96 (lambda (form)
97 (setq form (macroexpand form byte-compile-macro-environment))
98 (if (eq (car-safe form) 'progn)
99 (cons 'progn (mapcar 'byte-compile-file-form (cdr form)))
100 (funcall cl-old-bc-file-form form))))))
101 (put 'eql 'byte-compile 'cl-byte-compile-compiler-macro)
102 (run-hooks 'cl-hack-bytecomp-hook))
103
104
105;;; Symbols.
106
107(defvar *gensym-counter*)
108(defun gensym (&optional arg)
109 "Generate a new uninterned symbol.
110The name is made by appending a number to PREFIX, default \"G\"."
111 (let ((prefix (if (stringp arg) arg "G"))
112 (num (if (integerp arg) arg
113 (prog1 *gensym-counter*
114 (setq *gensym-counter* (1+ *gensym-counter*))))))
115 (make-symbol (format "%s%d" prefix num))))
116
117(defun gentemp (&optional arg)
118 "Generate a new interned symbol with a unique name.
119The name is made by appending a number to PREFIX, default \"G\"."
120 (let ((prefix (if (stringp arg) arg "G"))
121 name)
122 (while (intern-soft (setq name (format "%s%d" prefix *gensym-counter*)))
123 (setq *gensym-counter* (1+ *gensym-counter*)))
124 (intern name)))
125
126
127;;; Program structure.
128
129(defmacro defun* (name args &rest body)
130 "(defun* NAME ARGLIST [DOCSTRING] BODY...): define NAME as a function.
131Like normal `defun', except ARGLIST allows full Common Lisp conventions,
132and BODY is implicitly surrounded by (block NAME ...)."
133 (let* ((res (cl-transform-lambda (cons args body) name))
134 (form (list* 'defun name (cdr res))))
135 (if (car res) (list 'progn (car res) form) form)))
136
137(defmacro defmacro* (name args &rest body)
138 "(defmacro* NAME ARGLIST [DOCSTRING] BODY...): define NAME as a macro.
139Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
140and BODY is implicitly surrounded by (block NAME ...)."
141 (let* ((res (cl-transform-lambda (cons args body) name))
142 (form (list* 'defmacro name (cdr res))))
143 (if (car res) (list 'progn (car res) form) form)))
144
145(defmacro function* (func)
146 "(function* SYMBOL-OR-LAMBDA): introduce a function.
147Like normal `function', except that if argument is a lambda form, its
148ARGLIST allows full Common Lisp conventions."
149 (if (eq (car-safe func) 'lambda)
150 (let* ((res (cl-transform-lambda (cdr func) 'cl-none))
151 (form (list 'function (cons 'lambda (cdr res)))))
152 (if (car res) (list 'progn (car res) form) form))
153 (list 'function func)))
154
155(defun cl-transform-function-property (func prop form)
156 (let ((res (cl-transform-lambda form func)))
157 (append '(progn) (cdr (cdr (car res)))
158 (list (list 'put (list 'quote func) (list 'quote prop)
159 (list 'function (cons 'lambda (cdr res))))))))
160
161(defconst lambda-list-keywords
162 '(&optional &rest &key &allow-other-keys &aux &whole &body &environment))
163
164(defvar cl-macro-environment nil)
165(defvar bind-block) (defvar bind-defs) (defvar bind-enquote)
166(defvar bind-inits) (defvar bind-lets) (defvar bind-forms)
167
168(defun cl-transform-lambda (form bind-block)
169 (let* ((args (car form)) (body (cdr form))
170 (bind-defs nil) (bind-enquote nil)
171 (bind-inits nil) (bind-lets nil) (bind-forms nil)
172 (header nil) (simple-args nil))
173 (while (or (stringp (car body)) (eq (car-safe (car body)) 'interactive))
174 (cl-push (cl-pop body) header))
175 (setq args (if (listp args) (copy-list args) (list '&rest args)))
176 (let ((p (last args))) (if (cdr p) (setcdr p (list '&rest (cdr p)))))
177 (if (setq bind-defs (cadr (memq '&cl-defs args)))
178 (setq args (delq '&cl-defs (delq bind-defs args))
179 bind-defs (cadr bind-defs)))
180 (if (setq bind-enquote (memq '&cl-quote args))
181 (setq args (delq '&cl-quote args)))
182 (if (memq '&whole args) (error "&whole not currently implemented"))
183 (let* ((p (memq '&environment args)) (v (cadr p)))
184 (if p (setq args (nconc (delq (car p) (delq v args))
185 (list '&aux (list v 'cl-macro-environment))))))
186 (while (and args (symbolp (car args))
187 (not (memq (car args) '(nil &rest &body &key &aux)))
188 (not (and (eq (car args) '&optional)
189 (or bind-defs (consp (cadr args))))))
190 (cl-push (cl-pop args) simple-args))
191 (or (eq bind-block 'cl-none)
192 (setq body (list (list* 'block bind-block body))))
193 (if (null args)
194 (list* nil (nreverse simple-args) (nconc (nreverse header) body))
195 (if (memq '&optional simple-args) (cl-push '&optional args))
196 (cl-do-arglist args nil (- (length simple-args)
197 (if (memq '&optional simple-args) 1 0)))
198 (setq bind-lets (nreverse bind-lets))
199 (list* (and bind-inits (list* 'eval-when '(compile load eval)
200 (nreverse bind-inits)))
201 (nconc (nreverse simple-args)
202 (list '&rest (car (cl-pop bind-lets))))
203 (nconc (nreverse header)
204 (list (nconc (list 'let* bind-lets)
205 (nreverse bind-forms) body)))))))
206
207(defun cl-do-arglist (args expr &optional num) ; uses bind-*
208 (if (nlistp args)
209 (if (or (memq args lambda-list-keywords) (not (symbolp args)))
210 (error "Invalid argument name: %s" args)
211 (cl-push (list args expr) bind-lets))
212 (setq args (copy-list args))
213 (let ((p (last args))) (if (cdr p) (setcdr p (list '&rest (cdr p)))))
214 (let ((p (memq '&body args))) (if p (setcar p '&rest)))
215 (if (memq '&environment args) (error "&environment used incorrectly"))
216 (let ((save-args args)
217 (restarg (memq '&rest args))
218 (safety (if (cl-compiling-file) cl-optimize-safety 3))
219 (keys nil)
220 (laterarg nil) (exactarg nil) minarg)
221 (or num (setq num 0))
222 (if (listp (cadr restarg))
223 (setq restarg (gensym "--rest--"))
224 (setq restarg (cadr restarg)))
225 (cl-push (list restarg expr) bind-lets)
226 (if (eq (car args) '&whole)
227 (cl-push (list (cl-pop2 args) restarg) bind-lets))
228 (let ((p args))
229 (setq minarg restarg)
230 (while (and p (not (memq (car p) lambda-list-keywords)))
231 (or (eq p args) (setq minarg (list 'cdr minarg)))
232 (setq p (cdr p)))
233 (if (memq (car p) '(nil &aux))
234 (setq minarg (list '= (list 'length restarg)
235 (length (ldiff args p)))
236 exactarg (not (eq args p)))))
237 (while (and args (not (memq (car args) lambda-list-keywords)))
238 (let ((poparg (list (if (or (cdr args) (not exactarg)) 'pop 'car)
239 restarg)))
240 (cl-do-arglist
241 (cl-pop args)
242 (if (or laterarg (= safety 0)) poparg
243 (list 'if minarg poparg
244 (list 'signal '(quote wrong-number-of-arguments)
245 (list 'list (and (not (eq bind-block 'cl-none))
246 (list 'quote bind-block))
247 (list 'length restarg)))))))
248 (setq num (1+ num) laterarg t))
249 (while (and (eq (car args) '&optional) (cl-pop args))
250 (while (and args (not (memq (car args) lambda-list-keywords)))
251 (let ((arg (cl-pop args)))
252 (or (consp arg) (setq arg (list arg)))
253 (if (cddr arg) (cl-do-arglist (nth 2 arg) (list 'and restarg t)))
254 (let ((def (if (cdr arg) (nth 1 arg)
255 (or (car bind-defs)
256 (nth 1 (assq (car arg) bind-defs)))))
257 (poparg (list 'pop restarg)))
258 (and def bind-enquote (setq def (list 'quote def)))
259 (cl-do-arglist (car arg)
260 (if def (list 'if restarg poparg def) poparg))
261 (setq num (1+ num))))))
262 (if (eq (car args) '&rest)
263 (let ((arg (cl-pop2 args)))
264 (if (consp arg) (cl-do-arglist arg restarg)))
265 (or (eq (car args) '&key) (= safety 0) exactarg
266 (cl-push (list 'if restarg
267 (list 'signal '(quote wrong-number-of-arguments)
268 (list 'list
269 (and (not (eq bind-block 'cl-none))
270 (list 'quote bind-block))
271 (list '+ num (list 'length restarg)))))
272 bind-forms)))
273 (while (and (eq (car args) '&key) (cl-pop args))
274 (while (and args (not (memq (car args) lambda-list-keywords)))
275 (let ((arg (cl-pop args)))
276 (or (consp arg) (setq arg (list arg)))
277 (let* ((karg (if (consp (car arg)) (caar arg)
278 (intern (format ":%s" (car arg)))))
279 (varg (if (consp (car arg)) (cadar arg) (car arg)))
280 (def (if (cdr arg) (cadr arg)
281 (or (car bind-defs) (cadr (assq varg bind-defs)))))
282 (look (list 'memq (list 'quote karg) restarg)))
283 (and def bind-enquote (setq def (list 'quote def)))
284 (if (cddr arg)
285 (let* ((temp (or (nth 2 arg) (gensym)))
286 (val (list 'car (list 'cdr temp))))
287 (cl-do-arglist temp look)
288 (cl-do-arglist varg
289 (list 'if temp
290 (list 'prog1 val (list 'setq temp t))
291 def)))
292 (cl-do-arglist
293 varg
294 (list 'car
295 (list 'cdr
296 (if (null def)
297 look
298 (list 'or look
299 (if (eq (cl-const-expr-p def) t)
300 (list
301 'quote
302 (list nil (cl-const-expr-val def)))
303 (list 'list nil def))))))))
304 (cl-push karg keys)
305 (if (= (aref (symbol-name karg) 0) ?:)
306 (progn (set karg karg)
307 (cl-push (list 'setq karg (list 'quote karg))
308 bind-inits)))))))
309 (setq keys (nreverse keys))
310 (or (and (eq (car args) '&allow-other-keys) (cl-pop args))
311 (null keys) (= safety 0)
312 (let* ((var (gensym "--keys--"))
313 (allow '(:allow-other-keys))
314 (check (list
315 'while var
316 (list
317 'cond
318 (list (list 'memq (list 'car var)
319 (list 'quote (append keys allow)))
320 (list 'setq var (list 'cdr (list 'cdr var))))
321 (list (list 'car
322 (list 'cdr
323 (list 'memq (cons 'quote allow)
324 restarg)))
325 (list 'setq var nil))
326 (list t
327 (list
328 'error
329 (format "Keyword argument %%s not one of %s"
330 keys)
331 (list 'car var)))))))
332 (cl-push (list 'let (list (list var restarg)) check) bind-forms)))
333 (while (and (eq (car args) '&aux) (cl-pop args))
334 (while (and args (not (memq (car args) lambda-list-keywords)))
335 (if (consp (car args))
336 (if (and bind-enquote (cadar args))
337 (cl-do-arglist (caar args)
338 (list 'quote (cadr (cl-pop args))))
339 (cl-do-arglist (caar args) (cadr (cl-pop args))))
340 (cl-do-arglist (cl-pop args) nil))))
341 (if args (error "Malformed argument list %s" save-args)))))
342
343(defun cl-arglist-args (args)
344 (if (nlistp args) (list args)
345 (let ((res nil) (kind nil) arg)
346 (while (consp args)
347 (setq arg (cl-pop args))
348 (if (memq arg lambda-list-keywords) (setq kind arg)
349 (if (eq arg '&cl-defs) (cl-pop args)
350 (and (consp arg) kind (setq arg (car arg)))
351 (and (consp arg) (cdr arg) (eq kind '&key) (setq arg (cadr arg)))
352 (setq res (nconc res (cl-arglist-args arg))))))
353 (nconc res (and args (list args))))))
354
355(defmacro destructuring-bind (args expr &rest body)
356 (let* ((bind-lets nil) (bind-forms nil) (bind-inits nil)
357 (bind-defs nil) (bind-block 'cl-none))
358 (cl-do-arglist (or args '(&aux)) expr)
359 (append '(progn) bind-inits
360 (list (nconc (list 'let* (nreverse bind-lets))
361 (nreverse bind-forms) body)))))
362
363
364;;; The `eval-when' form.
365
366(defvar cl-not-toplevel nil)
367
368(defmacro eval-when (when &rest body)
369 "(eval-when (WHEN...) BODY...): control when BODY is evaluated.
370If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
371If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
372If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level."
373 (if (and (fboundp 'cl-compiling-file) (cl-compiling-file)
374 (not cl-not-toplevel) (not (boundp 'for-effect))) ; horrible kludge
375 (let ((comp (or (memq 'compile when) (memq ':compile-toplevel when)))
376 (cl-not-toplevel t))
377 (if (or (memq 'load when) (memq ':load-toplevel when))
378 (if comp (cons 'progn (mapcar 'cl-compile-time-too body))
379 (list* 'if nil nil body))
380 (progn (if comp (eval (cons 'progn body))) nil)))
381 (and (or (memq 'eval when) (memq ':execute when))
382 (cons 'progn body))))
383
384(defun cl-compile-time-too (form)
385 (or (and (symbolp (car-safe form)) (get (car-safe form) 'byte-hunk-handler))
386 (setq form (macroexpand
387 form (cons '(eval-when) byte-compile-macro-environment))))
388 (cond ((eq (car-safe form) 'progn)
389 (cons 'progn (mapcar 'cl-compile-time-too (cdr form))))
390 ((eq (car-safe form) 'eval-when)
391 (let ((when (nth 1 form)))
392 (if (or (memq 'eval when) (memq ':execute when))
393 (list* 'eval-when (cons 'compile when) (cddr form))
394 form)))
395 (t (eval form) form)))
396
397(or (and (fboundp 'eval-when-compile)
398 (not (eq (car-safe (symbol-function 'eval-when-compile)) 'autoload)))
399 (eval '(defmacro eval-when-compile (&rest body)
400 "Like `progn', but evaluates the body at compile time.
401The result of the body appears to the compiler as a quoted constant."
402 (list 'quote (eval (cons 'progn body))))))
403
404(defmacro load-time-value (form &optional read-only)
405 "Like `progn', but evaluates the body at load time.
406The result of the body appears to the compiler as a quoted constant."
407 (if (cl-compiling-file)
408 (let* ((temp (gentemp "--cl-load-time--"))
409 (set (list 'set (list 'quote temp) form)))
410 (if (and (fboundp 'byte-compile-file-form-defmumble)
411 (boundp 'this-kind) (boundp 'that-one))
412 (fset 'byte-compile-file-form
413 (list 'lambda '(form)
414 (list 'fset '(quote byte-compile-file-form)
415 (list 'quote
416 (symbol-function 'byte-compile-file-form)))
417 (list 'byte-compile-file-form (list 'quote set))
418 '(byte-compile-file-form form)))
419 (print set (symbol-value 'outbuffer)))
420 (list 'symbol-value (list 'quote temp)))
421 (list 'quote (eval form))))
422
423
424;;; Conditional control structures.
425
426(defmacro case (expr &rest clauses)
427 "(case EXPR CLAUSES...): evals EXPR, chooses from CLAUSES on that value.
428Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
429against each key in each KEYLIST; the corresponding BODY is evaluated.
430If no clause succeeds, case returns nil. A single atom may be used in
431place of a KEYLIST of one atom. A KEYLIST of `t' or `otherwise' is
432allowed only in the final clause, and matches if no other keys match.
433Key values are compared by `eql'."
434 (let* ((temp (if (cl-simple-expr-p expr 3) expr (gensym)))
435 (head-list nil)
436 (body (cons
437 'cond
438 (mapcar
439 (function
440 (lambda (c)
441 (cons (cond ((memq (car c) '(t otherwise)) t)
442 ((eq (car c) 'ecase-error-flag)
443 (list 'error "ecase failed: %s, %s"
444 temp (list 'quote (reverse head-list))))
445 ((listp (car c))
446 (setq head-list (append (car c) head-list))
447 (list 'member* temp (list 'quote (car c))))
448 (t
449 (if (memq (car c) head-list)
450 (error "Duplicate key in case: %s"
451 (car c)))
452 (cl-push (car c) head-list)
453 (list 'eql temp (list 'quote (car c)))))
454 (or (cdr c) '(nil)))))
455 clauses))))
456 (if (eq temp expr) body
457 (list 'let (list (list temp expr)) body))))
458
459(defmacro ecase (expr &rest clauses)
460 "(ecase EXPR CLAUSES...): like `case', but error if no case fits.
461`otherwise'-clauses are not allowed."
462 (list* 'case expr (append clauses '((ecase-error-flag)))))
463
464(defmacro typecase (expr &rest clauses)
465 "(typecase EXPR CLAUSES...): evals EXPR, chooses from CLAUSES on that value.
466Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
467satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
468typecase returns nil. A TYPE of `t' or `otherwise' is allowed only in the
469final clause, and matches if no other keys match."
470 (let* ((temp (if (cl-simple-expr-p expr 3) expr (gensym)))
471 (type-list nil)
472 (body (cons
473 'cond
474 (mapcar
475 (function
476 (lambda (c)
477 (cons (cond ((eq (car c) 'otherwise) t)
478 ((eq (car c) 'ecase-error-flag)
479 (list 'error "etypecase failed: %s, %s"
480 temp (list 'quote (reverse type-list))))
481 (t
482 (cl-push (car c) type-list)
483 (cl-make-type-test temp (car c))))
484 (or (cdr c) '(nil)))))
485 clauses))))
486 (if (eq temp expr) body
487 (list 'let (list (list temp expr)) body))))
488
489(defmacro etypecase (expr &rest clauses)
490 "(etypecase EXPR CLAUSES...): like `typecase', but error if no case fits.
491`otherwise'-clauses are not allowed."
492 (list* 'typecase expr (append clauses '((ecase-error-flag)))))
493
494
495;;; Blocks and exits.
496
497(defmacro block (name &rest body)
498 "(block NAME BODY...): define a lexically-scoped block named NAME.
499NAME may be any symbol. Code inside the BODY forms can call `return-from'
500to jump prematurely out of the block. This differs from `catch' and `throw'
501in two respects: First, the NAME is an unevaluated symbol rather than a
502quoted symbol or other form; and second, NAME is lexically rather than
503dynamically scoped: Only references to it within BODY will work. These
504references may appear inside macro expansions, but not inside functions
505called from BODY."
506 (if (cl-safe-expr-p (cons 'progn body)) (cons 'progn body)
507 (list 'cl-block-wrapper
508 (list* 'catch (list 'quote (intern (format "--cl-block-%s--" name)))
509 body))))
510
511(defvar cl-active-block-names nil)
512
513(put 'cl-block-wrapper 'byte-compile 'cl-byte-compile-block)
514(defun cl-byte-compile-block (cl-form)
515 (if (fboundp 'byte-compile-form-do-effect) ; Check for optimizing compiler
516 (progn
517 (let* ((cl-entry (cons (nth 1 (nth 1 (nth 1 cl-form))) nil))
518 (cl-active-block-names (cons cl-entry cl-active-block-names))
519 (cl-body (byte-compile-top-level
520 (cons 'progn (cddr (nth 1 cl-form))))))
521 (if (cdr cl-entry)
522 (byte-compile-form (list 'catch (nth 1 (nth 1 cl-form)) cl-body))
523 (byte-compile-form cl-body))))
524 (byte-compile-form (nth 1 cl-form))))
525
526(put 'cl-block-throw 'byte-compile 'cl-byte-compile-throw)
527(defun cl-byte-compile-throw (cl-form)
528 (let ((cl-found (assq (nth 1 (nth 1 cl-form)) cl-active-block-names)))
529 (if cl-found (setcdr cl-found t)))
530 (byte-compile-normal-call (cons 'throw (cdr cl-form))))
531
532(defmacro return (&optional res)
533 "(return [RESULT]): return from the block named nil.
534This is equivalent to `(return-from nil RESULT)'."
535 (list 'return-from nil res))
536
537(defmacro return-from (name &optional res)
538 "(return-from NAME [RESULT]): return from the block named NAME.
539This jump out to the innermost enclosing `(block NAME ...)' form,
540returning RESULT from that form (or nil if RESULT is omitted).
541This is compatible with Common Lisp, but note that `defun' and
542`defmacro' do not create implicit blocks as they do in Common Lisp."
543 (let ((name2 (intern (format "--cl-block-%s--" name))))
544 (list 'cl-block-throw (list 'quote name2) res)))
545
546
547;;; The "loop" macro.
548
549(defvar args) (defvar loop-accum-var) (defvar loop-accum-vars)
550(defvar loop-bindings) (defvar loop-body) (defvar loop-destr-temps)
551(defvar loop-finally) (defvar loop-finish-flag) (defvar loop-first-flag)
552(defvar loop-initially) (defvar loop-map-form) (defvar loop-name)
553(defvar loop-result) (defvar loop-result-explicit)
554(defvar loop-result-var) (defvar loop-steps) (defvar loop-symbol-macs)
555
556(defmacro loop (&rest args)
557 "(loop CLAUSE...): The Common Lisp `loop' macro.
558Valid clauses are:
559 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
560 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
561 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
562 always COND, never COND, thereis COND, collect EXPR into VAR,
563 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
564 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
565 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
566 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
567 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
568 finally return EXPR, named NAME."
569 (if (not (memq t (mapcar 'symbolp (delq nil (delq t (copy-list args))))))
570 (list 'block nil (list* 'while t args))
571 (let ((loop-name nil) (loop-bindings nil)
572 (loop-body nil) (loop-steps nil)
573 (loop-result nil) (loop-result-explicit nil)
574 (loop-result-var nil) (loop-finish-flag nil)
575 (loop-accum-var nil) (loop-accum-vars nil)
576 (loop-initially nil) (loop-finally nil)
577 (loop-map-form nil) (loop-first-flag nil)
578 (loop-destr-temps nil) (loop-symbol-macs nil))
579 (setq args (append args '(cl-end-loop)))
580 (while (not (eq (car args) 'cl-end-loop)) (cl-parse-loop-clause))
581 (if loop-finish-flag
582 (cl-push (list (list loop-finish-flag t)) loop-bindings))
583 (if loop-first-flag
584 (progn (cl-push (list (list loop-first-flag t)) loop-bindings)
585 (cl-push (list 'setq loop-first-flag nil) loop-steps)))
586 (let* ((epilogue (nconc (nreverse loop-finally)
587 (list (or loop-result-explicit loop-result))))
588 (ands (cl-loop-build-ands (nreverse loop-body)))
589 (while-body (nconc (cadr ands) (nreverse loop-steps)))
590 (body (append
591 (nreverse loop-initially)
592 (list (if loop-map-form
593 (list 'block '--cl-finish--
594 (subst
595 (if (eq (car ands) t) while-body
596 (cons (list 'or (car ands)
597 '(return-from --cl-finish--
598 nil))
599 while-body))
600 '--cl-map loop-map-form))
601 (list* 'while (car ands) while-body)))
602 (if loop-finish-flag
603 (if (equal epilogue '(nil)) (list loop-result-var)
604 (list (list 'if loop-finish-flag
605 (cons 'progn epilogue) loop-result-var)))
606 epilogue))))
607 (if loop-result-var (cl-push (list loop-result-var) loop-bindings))
608 (while loop-bindings
609 (if (cdar loop-bindings)
610 (setq body (list (cl-loop-let (cl-pop loop-bindings) body t)))
611 (let ((lets nil))
612 (while (and loop-bindings
613 (not (cdar loop-bindings)))
614 (cl-push (car (cl-pop loop-bindings)) lets))
615 (setq body (list (cl-loop-let lets body nil))))))
616 (if loop-symbol-macs
617 (setq body (list (list* 'symbol-macrolet loop-symbol-macs body))))
618 (list* 'block loop-name body)))))
619
620(defun cl-parse-loop-clause () ; uses args, loop-*
621 (let ((word (cl-pop args))
622 (hash-types '(hash-key hash-keys hash-value hash-values))
623 (key-types '(key-code key-codes key-seq key-seqs
624 key-binding key-bindings)))
625 (cond
626
627 ((null args)
628 (error "Malformed `loop' macro"))
629
630 ((eq word 'named)
631 (setq loop-name (cl-pop args)))
632
633 ((eq word 'initially)
634 (if (memq (car args) '(do doing)) (cl-pop args))
635 (or (consp (car args)) (error "Syntax error on `initially' clause"))
636 (while (consp (car args))
637 (cl-push (cl-pop args) loop-initially)))
638
639 ((eq word 'finally)
640 (if (eq (car args) 'return)
641 (setq loop-result-explicit (or (cl-pop2 args) '(quote nil)))
642 (if (memq (car args) '(do doing)) (cl-pop args))
643 (or (consp (car args)) (error "Syntax error on `finally' clause"))
644 (if (and (eq (caar args) 'return) (null loop-name))
645 (setq loop-result-explicit (or (nth 1 (cl-pop args)) '(quote nil)))
646 (while (consp (car args))
647 (cl-push (cl-pop args) loop-finally)))))
648
649 ((memq word '(for as))
650 (let ((loop-for-bindings nil) (loop-for-sets nil) (loop-for-steps nil)
651 (ands nil))
652 (while
653 (let ((var (or (cl-pop args) (gensym))))
654 (setq word (cl-pop args))
655 (if (eq word 'being) (setq word (cl-pop args)))
656 (if (memq word '(the each)) (setq word (cl-pop args)))
657 (if (memq word '(buffer buffers))
658 (setq word 'in args (cons '(buffer-list) args)))
659 (cond
660
661 ((memq word '(from downfrom upfrom to downto upto
662 above below by))
663 (cl-push word args)
664 (if (memq (car args) '(downto above))
665 (error "Must specify `from' value for downward loop"))
666 (let* ((down (or (eq (car args) 'downfrom)
667 (memq (caddr args) '(downto above))))
668 (excl (or (memq (car args) '(above below))
669 (memq (caddr args) '(above below))))
670 (start (and (memq (car args) '(from upfrom downfrom))
671 (cl-pop2 args)))
672 (end (and (memq (car args)
673 '(to upto downto above below))
674 (cl-pop2 args)))
675 (step (and (eq (car args) 'by) (cl-pop2 args)))
676 (end-var (and (not (cl-const-expr-p end)) (gensym)))
677 (step-var (and (not (cl-const-expr-p step))
678 (gensym))))
679 (and step (numberp step) (<= step 0)
680 (error "Loop `by' value is not positive: %s" step))
681 (cl-push (list var (or start 0)) loop-for-bindings)
682 (if end-var (cl-push (list end-var end) loop-for-bindings))
683 (if step-var (cl-push (list step-var step)
684 loop-for-bindings))
685 (if end
686 (cl-push (list
687 (if down (if excl '> '>=) (if excl '< '<=))
688 var (or end-var end)) loop-body))
689 (cl-push (list var (list (if down '- '+) var
690 (or step-var step 1)))
691 loop-for-steps)))
692
693 ((memq word '(in in-ref on))
694 (let* ((on (eq word 'on))
695 (temp (if (and on (symbolp var)) var (gensym))))
696 (cl-push (list temp (cl-pop args)) loop-for-bindings)
697 (cl-push (list 'consp temp) loop-body)
698 (if (eq word 'in-ref)
699 (cl-push (list var (list 'car temp)) loop-symbol-macs)
700 (or (eq temp var)
701 (progn
702 (cl-push (list var nil) loop-for-bindings)
703 (cl-push (list var (if on temp (list 'car temp)))
704 loop-for-sets))))
705 (cl-push (list temp
706 (if (eq (car args) 'by)
707 (let ((step (cl-pop2 args)))
708 (if (and (memq (car-safe step)
709 '(quote function
710 function*))
711 (symbolp (nth 1 step)))
712 (list (nth 1 step) temp)
713 (list 'funcall step temp)))
714 (list 'cdr temp)))
715 loop-for-steps)))
716
717 ((eq word '=)
718 (let* ((start (cl-pop args))
719 (then (if (eq (car args) 'then) (cl-pop2 args) start)))
720 (cl-push (list var nil) loop-for-bindings)
721 (if (or ands (eq (car args) 'and))
722 (progn
723 (cl-push (list var
724 (list 'if
725 (or loop-first-flag
726 (setq loop-first-flag
727 (gensym)))
728 start var))
729 loop-for-sets)
730 (cl-push (list var then) loop-for-steps))
731 (cl-push (list var
732 (if (eq start then) start
733 (list 'if
734 (or loop-first-flag
735 (setq loop-first-flag (gensym)))
736 start then)))
737 loop-for-sets))))
738
739 ((memq word '(across across-ref))
740 (let ((temp-vec (gensym)) (temp-idx (gensym)))
741 (cl-push (list temp-vec (cl-pop args)) loop-for-bindings)
742 (cl-push (list temp-idx -1) loop-for-bindings)
743 (cl-push (list '< (list 'setq temp-idx (list '1+ temp-idx))
744 (list 'length temp-vec)) loop-body)
745 (if (eq word 'across-ref)
746 (cl-push (list var (list 'aref temp-vec temp-idx))
747 loop-symbol-macs)
748 (cl-push (list var nil) loop-for-bindings)
749 (cl-push (list var (list 'aref temp-vec temp-idx))
750 loop-for-sets))))
751
752 ((memq word '(element elements))
753 (let ((ref (or (memq (car args) '(in-ref of-ref))
754 (and (not (memq (car args) '(in of)))
755 (error "Expected `of'"))))
756 (seq (cl-pop2 args))
757 (temp-seq (gensym))
758 (temp-idx (if (eq (car args) 'using)
759 (if (and (= (length (cadr args)) 2)
760 (eq (caadr args) 'index))
761 (cadr (cl-pop2 args))
762 (error "Bad `using' clause"))
763 (gensym))))
764 (cl-push (list temp-seq seq) loop-for-bindings)
765 (cl-push (list temp-idx 0) loop-for-bindings)
766 (if ref
767 (let ((temp-len (gensym)))
768 (cl-push (list temp-len (list 'length temp-seq))
769 loop-for-bindings)
770 (cl-push (list var (list 'elt temp-seq temp-idx))
771 loop-symbol-macs)
772 (cl-push (list '< temp-idx temp-len) loop-body))
773 (cl-push (list var nil) loop-for-bindings)
774 (cl-push (list 'and temp-seq
775 (list 'or (list 'consp temp-seq)
776 (list '< temp-idx
777 (list 'length temp-seq))))
778 loop-body)
779 (cl-push (list var (list 'if (list 'consp temp-seq)
780 (list 'pop temp-seq)
781 (list 'aref temp-seq temp-idx)))
782 loop-for-sets))
783 (cl-push (list temp-idx (list '1+ temp-idx))
784 loop-for-steps)))
785
786 ((memq word hash-types)
787 (or (memq (car args) '(in of)) (error "Expected `of'"))
788 (let* ((table (cl-pop2 args))
789 (other (if (eq (car args) 'using)
790 (if (and (= (length (cadr args)) 2)
791 (memq (caadr args) hash-types)
792 (not (eq (caadr args) word)))
793 (cadr (cl-pop2 args))
794 (error "Bad `using' clause"))
795 (gensym))))
796 (if (memq word '(hash-value hash-values))
797 (setq var (prog1 other (setq other var))))
798 (setq loop-map-form
799 (list 'maphash (list 'function
800 (list* 'lambda (list var other)
801 '--cl-map)) table))))
802
803 ((memq word '(symbol present-symbol external-symbol
804 symbols present-symbols external-symbols))
805 (let ((ob (and (memq (car args) '(in of)) (cl-pop2 args))))
806 (setq loop-map-form
807 (list 'mapatoms (list 'function
808 (list* 'lambda (list var)
809 '--cl-map)) ob))))
810
811 ((memq word '(overlay overlays extent extents))
812 (let ((buf nil) (from nil) (to nil))
813 (while (memq (car args) '(in of from to))
814 (cond ((eq (car args) 'from) (setq from (cl-pop2 args)))
815 ((eq (car args) 'to) (setq to (cl-pop2 args)))
816 (t (setq buf (cl-pop2 args)))))
817 (setq loop-map-form
818 (list 'cl-map-extents
819 (list 'function (list 'lambda (list var (gensym))
820 '(progn . --cl-map) nil))
821 buf from to))))
822
823 ((memq word '(interval intervals))
824 (let ((buf nil) (prop nil) (from nil) (to nil)
825 (var1 (gensym)) (var2 (gensym)))
826 (while (memq (car args) '(in of property from to))
827 (cond ((eq (car args) 'from) (setq from (cl-pop2 args)))
828 ((eq (car args) 'to) (setq to (cl-pop2 args)))
829 ((eq (car args) 'property)
830 (setq prop (cl-pop2 args)))
831 (t (setq buf (cl-pop2 args)))))
832 (if (and (consp var) (symbolp (car var)) (symbolp (cdr var)))
833 (setq var1 (car var) var2 (cdr var))
834 (cl-push (list var (list 'cons var1 var2)) loop-for-sets))
835 (setq loop-map-form
836 (list 'cl-map-intervals
837 (list 'function (list 'lambda (list var1 var2)
838 '(progn . --cl-map)))
839 buf prop from to))))
840
841 ((memq word key-types)
842 (or (memq (car args) '(in of)) (error "Expected `of'"))
843 (let ((map (cl-pop2 args))
844 (other (if (eq (car args) 'using)
845 (if (and (= (length (cadr args)) 2)
846 (memq (caadr args) key-types)
847 (not (eq (caadr args) word)))
848 (cadr (cl-pop2 args))
849 (error "Bad `using' clause"))
850 (gensym))))
851 (if (memq word '(key-binding key-bindings))
852 (setq var (prog1 other (setq other var))))
853 (setq loop-map-form
854 (list (if (memq word '(key-seq key-seqs))
855 'cl-map-keymap-recursively 'cl-map-keymap)
856 (list 'function (list* 'lambda (list var other)
857 '--cl-map)) map))))
858
859 ((memq word '(frame frames screen screens))
860 (let ((temp (gensym)))
861 (cl-push (list var (if (eq cl-emacs-type 'lucid)
862 '(selected-screen) '(selected-frame)))
863 loop-for-bindings)
864 (cl-push (list temp nil) loop-for-bindings)
865 (cl-push (list 'prog1 (list 'not (list 'eq var temp))
866 (list 'or temp (list 'setq temp var)))
867 loop-body)
868 (cl-push (list var (list (if (eq cl-emacs-type 'lucid)
869 'next-screen 'next-frame) var))
870 loop-for-steps)))
871
872 ((memq word '(window windows))
873 (let ((scr (and (memq (car args) '(in of)) (cl-pop2 args)))
874 (temp (gensym)))
875 (cl-push (list var (if scr
876 (list (if (eq cl-emacs-type 'lucid)
877 'screen-selected-window
878 'frame-selected-window) scr)
879 '(selected-window)))
880 loop-for-bindings)
881 (cl-push (list temp nil) loop-for-bindings)
882 (cl-push (list 'prog1 (list 'not (list 'eq var temp))
883 (list 'or temp (list 'setq temp var)))
884 loop-body)
885 (cl-push (list var (list 'next-window var)) loop-for-steps)))
886
887 (t
888 (let ((handler (and (symbolp word)
889 (get word 'cl-loop-for-handler))))
890 (if handler
891 (funcall handler var)
892 (error "Expected a `for' preposition, found %s" word)))))
893 (eq (car args) 'and))
894 (setq ands t)
895 (cl-pop args))
896 (if (and ands loop-for-bindings)
897 (cl-push (nreverse loop-for-bindings) loop-bindings)
898 (setq loop-bindings (nconc (mapcar 'list loop-for-bindings)
899 loop-bindings)))
900 (if loop-for-sets
901 (cl-push (list 'progn
902 (cl-loop-let (nreverse loop-for-sets) 'setq ands)
903 t) loop-body))
904 (if loop-for-steps
905 (cl-push (cons (if ands 'psetq 'setq)
906 (apply 'append (nreverse loop-for-steps)))
907 loop-steps))))
908
909 ((eq word 'repeat)
910 (let ((temp (gensym)))
911 (cl-push (list (list temp (cl-pop args))) loop-bindings)
912 (cl-push (list '>= (list 'setq temp (list '1- temp)) 0) loop-body)))
913
914 ((eq word 'collect)
915 (let ((what (cl-pop args))
916 (var (cl-loop-handle-accum nil 'nreverse)))
917 (if (eq var loop-accum-var)
918 (cl-push (list 'progn (list 'push what var) t) loop-body)
919 (cl-push (list 'progn
920 (list 'setq var (list 'nconc var (list 'list what)))
921 t) loop-body))))
922
923 ((memq word '(nconc nconcing append appending))
924 (let ((what (cl-pop args))
925 (var (cl-loop-handle-accum nil 'nreverse)))
926 (cl-push (list 'progn
927 (list 'setq var
928 (if (eq var loop-accum-var)
929 (list 'nconc
930 (list (if (memq word '(nconc nconcing))
931 'nreverse 'reverse)
932 what)
933 var)
934 (list (if (memq word '(nconc nconcing))
935 'nconc 'append)
936 var what))) t) loop-body)))
937
938 ((memq word '(concat concating))
939 (let ((what (cl-pop args))
940 (var (cl-loop-handle-accum "")))
941 (cl-push (list 'progn (list 'callf 'concat var what) t) loop-body)))
942
943 ((memq word '(vconcat vconcating))
944 (let ((what (cl-pop args))
945 (var (cl-loop-handle-accum [])))
946 (cl-push (list 'progn (list 'callf 'vconcat var what) t) loop-body)))
947
948 ((memq word '(sum summing))
949 (let ((what (cl-pop args))
950 (var (cl-loop-handle-accum 0)))
951 (cl-push (list 'progn (list 'incf var what) t) loop-body)))
952
953 ((memq word '(count counting))
954 (let ((what (cl-pop args))
955 (var (cl-loop-handle-accum 0)))
956 (cl-push (list 'progn (list 'if what (list 'incf var)) t) loop-body)))
957
958 ((memq word '(minimize minimizing maximize maximizing))
959 (let* ((what (cl-pop args))
960 (temp (if (cl-simple-expr-p what) what (gensym)))
961 (var (cl-loop-handle-accum nil))
962 (func (intern (substring (symbol-name word) 0 3)))
963 (set (list 'setq var (list 'if var (list func var temp) temp))))
964 (cl-push (list 'progn (if (eq temp what) set
965 (list 'let (list (list temp what)) set))
966 t) loop-body)))
967
968 ((eq word 'with)
969 (let ((bindings nil))
970 (while (progn (cl-push (list (cl-pop args)
971 (and (eq (car args) '=) (cl-pop2 args)))
972 bindings)
973 (eq (car args) 'and))
974 (cl-pop args))
975 (cl-push (nreverse bindings) loop-bindings)))
976
977 ((eq word 'while)
978 (cl-push (cl-pop args) loop-body))
979
980 ((eq word 'until)
981 (cl-push (list 'not (cl-pop args)) loop-body))
982
983 ((eq word 'always)
984 (or loop-finish-flag (setq loop-finish-flag (gensym)))
985 (cl-push (list 'setq loop-finish-flag (cl-pop args)) loop-body)
986 (setq loop-result t))
987
988 ((eq word 'never)
989 (or loop-finish-flag (setq loop-finish-flag (gensym)))
990 (cl-push (list 'setq loop-finish-flag (list 'not (cl-pop args)))
991 loop-body)
992 (setq loop-result t))
993
994 ((eq word 'thereis)
995 (or loop-finish-flag (setq loop-finish-flag (gensym)))
996 (or loop-result-var (setq loop-result-var (gensym)))
997 (cl-push (list 'setq loop-finish-flag
998 (list 'not (list 'setq loop-result-var (cl-pop args))))
999 loop-body))
1000
1001 ((memq word '(if when unless))
1002 (let* ((cond (cl-pop args))
1003 (then (let ((loop-body nil))
1004 (cl-parse-loop-clause)
1005 (cl-loop-build-ands (nreverse loop-body))))
1006 (else (let ((loop-body nil))
1007 (if (eq (car args) 'else)
1008 (progn (cl-pop args) (cl-parse-loop-clause)))
1009 (cl-loop-build-ands (nreverse loop-body))))
1010 (simple (and (eq (car then) t) (eq (car else) t))))
1011 (if (eq (car args) 'end) (cl-pop args))
1012 (if (eq word 'unless) (setq then (prog1 else (setq else then))))
1013 (let ((form (cons (if simple (cons 'progn (nth 1 then)) (nth 2 then))
1014 (if simple (nth 1 else) (list (nth 2 else))))))
1015 (if (cl-expr-contains form 'it)
1016 (let ((temp (gensym)))
1017 (cl-push (list temp) loop-bindings)
1018 (setq form (list* 'if (list 'setq temp cond)
1019 (subst temp 'it form))))
1020 (setq form (list* 'if cond form)))
1021 (cl-push (if simple (list 'progn form t) form) loop-body))))
1022
1023 ((memq word '(do doing))
1024 (let ((body nil))
1025 (or (consp (car args)) (error "Syntax error on `do' clause"))
1026 (while (consp (car args)) (cl-push (cl-pop args) body))
1027 (cl-push (cons 'progn (nreverse (cons t body))) loop-body)))
1028
1029 ((eq word 'return)
1030 (or loop-finish-flag (setq loop-finish-flag (gensym)))
1031 (or loop-result-var (setq loop-result-var (gensym)))
1032 (cl-push (list 'setq loop-result-var (cl-pop args)
1033 loop-finish-flag nil) loop-body))
1034
1035 (t
1036 (let ((handler (and (symbolp word) (get word 'cl-loop-handler))))
1037 (or handler (error "Expected a loop keyword, found %s" word))
1038 (funcall handler))))
1039 (if (eq (car args) 'and)
1040 (progn (cl-pop args) (cl-parse-loop-clause)))))
1041
1042(defun cl-loop-let (specs body par) ; uses loop-*
1043 (let ((p specs) (temps nil) (new nil))
1044 (while (and p (or (symbolp (car-safe (car p))) (null (cadar p))))
1045 (setq p (cdr p)))
1046 (and par p
1047 (progn
1048 (setq par nil p specs)
1049 (while p
1050 (or (cl-const-expr-p (cadar p))
1051 (let ((temp (gensym)))
1052 (cl-push (list temp (cadar p)) temps)
1053 (setcar (cdar p) temp)))
1054 (setq p (cdr p)))))
1055 (while specs
1056 (if (and (consp (car specs)) (listp (caar specs)))
1057 (let* ((spec (caar specs)) (nspecs nil)
1058 (expr (cadr (cl-pop specs)))
1059 (temp (cdr (or (assq spec loop-destr-temps)
1060 (car (cl-push (cons spec (or (last spec 0)
1061 (gensym)))
1062 loop-destr-temps))))))
1063 (cl-push (list temp expr) new)
1064 (while (consp spec)
1065 (cl-push (list (cl-pop spec)
1066 (and expr (list (if spec 'pop 'car) temp)))
1067 nspecs))
1068 (setq specs (nconc (nreverse nspecs) specs)))
1069 (cl-push (cl-pop specs) new)))
1070 (if (eq body 'setq)
1071 (let ((set (cons (if par 'psetq 'setq) (apply 'nconc (nreverse new)))))
1072 (if temps (list 'let* (nreverse temps) set) set))
1073 (list* (if par 'let 'let*)
1074 (nconc (nreverse temps) (nreverse new)) body))))
1075
1076(defun cl-loop-handle-accum (def &optional func) ; uses args, loop-*
1077 (if (eq (car args) 'into)
1078 (let ((var (cl-pop2 args)))
1079 (or (memq var loop-accum-vars)
1080 (progn (cl-push (list (list var def)) loop-bindings)
1081 (cl-push var loop-accum-vars)))
1082 var)
1083 (or loop-accum-var
1084 (progn
1085 (cl-push (list (list (setq loop-accum-var (gensym)) def))
1086 loop-bindings)
1087 (setq loop-result (if func (list func loop-accum-var)
1088 loop-accum-var))
1089 loop-accum-var))))
1090
1091(defun cl-loop-build-ands (clauses)
1092 (let ((ands nil)
1093 (body nil))
1094 (while clauses
1095 (if (and (eq (car-safe (car clauses)) 'progn)
1096 (eq (car (last (car clauses))) t))
1097 (if (cdr clauses)
1098 (setq clauses (cons (nconc (butlast (car clauses))
1099 (if (eq (car-safe (cadr clauses))
1100 'progn)
1101 (cdadr clauses)
1102 (list (cadr clauses))))
1103 (cddr clauses)))
1104 (setq body (cdr (butlast (cl-pop clauses)))))
1105 (cl-push (cl-pop clauses) ands)))
1106 (setq ands (or (nreverse ands) (list t)))
1107 (list (if (cdr ands) (cons 'and ands) (car ands))
1108 body
1109 (let ((full (if body
1110 (append ands (list (cons 'progn (append body '(t)))))
1111 ands)))
1112 (if (cdr full) (cons 'and full) (car full))))))
1113
1114
1115;;; Other iteration control structures.
1116
1117(defmacro do (steps endtest &rest body)
1118 "The Common Lisp `do' loop.
1119Format is: (do ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
1120 (cl-expand-do-loop steps endtest body nil))
1121
1122(defmacro do* (steps endtest &rest body)
1123 "The Common Lisp `do*' loop.
1124Format is: (do* ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
1125 (cl-expand-do-loop steps endtest body t))
1126
1127(defun cl-expand-do-loop (steps endtest body star)
1128 (list 'block nil
1129 (list* (if star 'let* 'let)
1130 (mapcar (function (lambda (c)
1131 (if (consp c) (list (car c) (nth 1 c)) c)))
1132 steps)
1133 (list* 'while (list 'not (car endtest))
1134 (append body
1135 (let ((sets (mapcar
1136 (function
1137 (lambda (c)
1138 (and (consp c) (cdr (cdr c))
1139 (list (car c) (nth 2 c)))))
1140 steps)))
1141 (setq sets (delq nil sets))
1142 (and sets
1143 (list (cons (if (or star (not (cdr sets)))
1144 'setq 'psetq)
1145 (apply 'append sets)))))))
1146 (or (cdr endtest) '(nil)))))
1147
1148(defmacro dolist (spec &rest body)
1149 "(dolist (VAR LIST [RESULT]) BODY...): loop over a list.
1150Evaluate BODY with VAR bound to each `car' from LIST, in turn.
1151Then evaluate RESULT to get return value, default nil."
1152 (let ((temp (gensym "--dolist-temp--")))
1153 (list 'block nil
1154 (list* 'let (list (list temp (nth 1 spec)) (car spec))
1155 (list* 'while temp (list 'setq (car spec) (list 'car temp))
1156 (append body (list (list 'setq temp
1157 (list 'cdr temp)))))
1158 (if (cdr (cdr spec))
1159 (cons (list 'setq (car spec) nil) (cdr (cdr spec)))
1160 '(nil))))))
1161
1162(defmacro dotimes (spec &rest body)
1163 "(dotimes (VAR COUNT [RESULT]) BODY...): loop a certain number of times.
1164Evaluate BODY with VAR bound to successive integers from 0, inclusive,
1165to COUNT, exclusive. Then evaluate RESULT to get return value, default
1166nil."
1167 (let ((temp (gensym "--dotimes-temp--")))
1168 (list 'block nil
1169 (list* 'let (list (list temp (nth 1 spec)) (list (car spec) 0))
1170 (list* 'while (list '< (car spec) temp)
1171 (append body (list (list 'incf (car spec)))))
1172 (or (cdr (cdr spec)) '(nil))))))
1173
1174(defmacro do-symbols (spec &rest body)
1175 "(dosymbols (VAR [OBARRAY [RESULT]]) BODY...): loop over all symbols.
1176Evaluate BODY with VAR bound to each interned symbol, or to each symbol
1177from OBARRAY."
1178 ;; Apparently this doesn't have an implicit block.
1179 (list 'block nil
1180 (list 'let (list (car spec))
1181 (list* 'mapatoms
1182 (list 'function (list* 'lambda (list (car spec)) body))
1183 (and (cadr spec) (list (cadr spec))))
1184 (caddr spec))))
1185
1186(defmacro do-all-symbols (spec &rest body)
1187 (list* 'do-symbols (list (car spec) nil (cadr spec)) body))
1188
1189
1190;;; Assignments.
1191
1192(defmacro psetq (&rest args)
1193 "(psetq SYM VAL SYM VAL ...): set SYMs to the values VALs in parallel.
1194This is like `setq', except that all VAL forms are evaluated (in order)
1195before assigning any symbols SYM to the corresponding values."
1196 (cons 'psetf args))
1197
1198
1199;;; Binding control structures.
1200
1201(defmacro progv (symbols values &rest body)
1202 "(progv SYMBOLS VALUES BODY...): bind SYMBOLS to VALUES dynamically in BODY.
1203The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
1204Each SYMBOL in the first list is bound to the corresponding VALUE in the
1205second list (or made unbound if VALUES is shorter than SYMBOLS); then the
1206BODY forms are executed and their result is returned. This is much like
1207a `let' form, except that the list of symbols can be computed at run-time."
1208 (list 'let '((cl-progv-save nil))
1209 (list 'unwind-protect
1210 (list* 'progn (list 'cl-progv-before symbols values) body)
1211 '(cl-progv-after))))
1212
1213;;; This should really have some way to shadow 'byte-compile properties, etc.
1214(defmacro flet (bindings &rest body)
1215 "(flet ((FUNC ARGLIST BODY...) ...) FORM...): make temporary function defns.
1216This is an analogue of `let' that operates on the function cell of FUNC
1217rather than its value cell. The FORMs are evaluated with the specified
1218function definitions in place, then the definitions are undone (the FUNCs
1219go back to their previous definitions, or lack thereof)."
1220 (list* 'letf*
1221 (mapcar
1222 (function
1223 (lambda (x)
1224 (let ((func (list 'function*
1225 (list 'lambda (cadr x)
1226 (list* 'block (car x) (cddr x))))))
1227 (if (and (cl-compiling-file)
1228 (boundp 'byte-compile-function-environment))
1229 (cl-push (cons (car x) (eval func))
1230 byte-compile-function-environment))
1231 (list (list 'symbol-function (list 'quote (car x))) func))))
1232 bindings)
1233 body))
1234
1235(defmacro labels (&rest args) (cons 'flet args))
1236
1237;; The following ought to have a better definition for use with newer
1238;; byte compilers.
1239(defmacro macrolet (bindings &rest body)
1240 "(macrolet ((NAME ARGLIST BODY...) ...) FORM...): make temporary macro defns.
1241This is like `flet', but for macros instead of functions."
1242 (if (cdr bindings)
1243 (list 'macrolet
1244 (list (car bindings)) (list* 'macrolet (cdr bindings) body))
1245 (if (null bindings) (cons 'progn body)
1246 (let* ((name (caar bindings))
1247 (res (cl-transform-lambda (cdar bindings) name)))
1248 (eval (car res))
1249 (cl-macroexpand-all (cons 'progn body)
1250 (cons (list* name 'lambda (cdr res))
1251 cl-macro-environment))))))
1252
1253(defmacro symbol-macrolet (bindings &rest body)
1254 "(symbol-macrolet ((NAME EXPANSION) ...) FORM...): make symbol macro defns.
1255Within the body FORMs, references to the variable NAME will be replaced
1256by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...)."
1257 (if (cdr bindings)
1258 (list 'symbol-macrolet
1259 (list (car bindings)) (list* 'symbol-macrolet (cdr bindings) body))
1260 (if (null bindings) (cons 'progn body)
1261 (cl-macroexpand-all (cons 'progn body)
1262 (cons (list (symbol-name (caar bindings))
1263 (cadar bindings))
1264 cl-macro-environment)))))
1265
1266(defvar cl-closure-vars nil)
1267(defmacro lexical-let (bindings &rest body)
1268 "(lexical-let BINDINGS BODY...): like `let', but lexically scoped.
1269The main visible difference is that lambdas inside BODY will create
1270lexical closures as in Common Lisp."
1271 (let* ((cl-closure-vars cl-closure-vars)
1272 (vars (mapcar (function
1273 (lambda (x)
1274 (or (consp x) (setq x (list x)))
1275 (cl-push (gensym (format "--%s--" (car x)))
1276 cl-closure-vars)
1277 (list (car x) (cadr x) (car cl-closure-vars))))
1278 bindings))
1279 (ebody
1280 (cl-macroexpand-all
1281 (cons 'progn body)
1282 (nconc (mapcar (function (lambda (x)
1283 (list (symbol-name (car x))
1284 (list 'symbol-value (caddr x))
1285 t))) vars)
1286 (list '(defun . cl-defun-expander))
1287 cl-macro-environment))))
1288 (if (not (get (car (last cl-closure-vars)) 'used))
1289 (list 'let (mapcar (function (lambda (x)
1290 (list (caddr x) (cadr x)))) vars)
1291 (sublis (mapcar (function (lambda (x)
1292 (cons (caddr x)
1293 (list 'quote (caddr x)))))
1294 vars)
1295 ebody))
1296 (list 'let (mapcar (function (lambda (x)
1297 (list (caddr x)
1298 (list 'make-symbol
1299 (format "--%s--" (car x))))))
1300 vars)
1301 (apply 'append '(setf)
1302 (mapcar (function
1303 (lambda (x)
1304 (list (list 'symbol-value (caddr x)) (cadr x))))
1305 vars))
1306 ebody))))
1307
1308(defmacro lexical-let* (bindings &rest body)
1309 "(lexical-let* BINDINGS BODY...): like `let*', but lexically scoped.
1310The main visible difference is that lambdas inside BODY will create
1311lexical closures as in Common Lisp."
1312 (if (null bindings) (cons 'progn body)
1313 (setq bindings (reverse bindings))
1314 (while bindings
1315 (setq body (list (list* 'lexical-let (list (cl-pop bindings)) body))))
1316 (car body)))
1317
1318(defun cl-defun-expander (func &rest rest)
1319 (list 'progn
1320 (list 'defalias (list 'quote func)
1321 (list 'function (cons 'lambda rest)))
1322 (list 'quote func)))
1323
1324
1325;;; Multiple values.
1326
1327(defmacro multiple-value-bind (vars form &rest body)
1328 "(multiple-value-bind (SYM SYM...) FORM BODY): collect multiple return values.
1329FORM must return a list; the BODY is then executed with the first N elements
1330of this list bound (`let'-style) to each of the symbols SYM in turn. This
1331is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
1332simulate true multiple return values. For compatibility, (values A B C) is
1333a synonym for (list A B C)."
1334 (let ((temp (gensym)) (n -1))
1335 (list* 'let* (cons (list temp form)
1336 (mapcar (function
1337 (lambda (v)
1338 (list v (list 'nth (setq n (1+ n)) temp))))
1339 vars))
1340 body)))
1341
1342(defmacro multiple-value-setq (vars form)
1343 "(multiple-value-setq (SYM SYM...) FORM): collect multiple return values.
1344FORM must return a list; the first N elements of this list are stored in
1345each of the symbols SYM in turn. This is analogous to the Common Lisp
1346`multiple-value-setq' macro, using lists to simulate true multiple return
1347values. For compatibility, (values A B C) is a synonym for (list A B C)."
1348 (cond ((null vars) (list 'progn form nil))
1349 ((null (cdr vars)) (list 'setq (car vars) (list 'car form)))
1350 (t
1351 (let* ((temp (gensym)) (n 0))
1352 (list 'let (list (list temp form))
1353 (list 'prog1 (list 'setq (cl-pop vars) (list 'car temp))
1354 (cons 'setq (apply 'nconc
1355 (mapcar (function
1356 (lambda (v)
1357 (list v (list
1358 'nth
1359 (setq n (1+ n))
1360 temp))))
1361 vars)))))))))
1362
1363
1364;;; Declarations.
1365
1366(defmacro locally (&rest body) (cons 'progn body))
1367(defmacro the (type form) form)
1368
1369(defvar cl-proclaim-history t) ; for future compilers
1370(defvar cl-declare-stack t) ; for future compilers
1371
1372(defun cl-do-proclaim (spec hist)
1373 (and hist (listp cl-proclaim-history) (cl-push spec cl-proclaim-history))
1374 (cond ((eq (car-safe spec) 'special)
1375 (if (boundp 'byte-compile-bound-variables)
1376 (setq byte-compile-bound-variables
1377 (append (cdr spec) byte-compile-bound-variables))))
1378
1379 ((eq (car-safe spec) 'inline)
1380 (while (setq spec (cdr spec))
1381 (or (memq (get (car spec) 'byte-optimizer)
1382 '(nil byte-compile-inline-expand))
1383 (error "%s already has a byte-optimizer, can't make it inline"
1384 (car spec)))
1385 (put (car spec) 'byte-optimizer 'byte-compile-inline-expand)))
1386
1387 ((eq (car-safe spec) 'notinline)
1388 (while (setq spec (cdr spec))
1389 (if (eq (get (car spec) 'byte-optimizer)
1390 'byte-compile-inline-expand)
1391 (put (car spec) 'byte-optimizer nil))))
1392
1393 ((eq (car-safe spec) 'optimize)
1394 (let ((speed (assq (nth 1 (assq 'speed (cdr spec)))
1395 '((0 nil) (1 t) (2 t) (3 t))))
1396 (safety (assq (nth 1 (assq 'safety (cdr spec)))
1397 '((0 t) (1 t) (2 t) (3 nil)))))
1398 (if speed (setq cl-optimize-speed (car speed)
1399 byte-optimize (nth 1 speed)))
1400 (if safety (setq cl-optimize-safety (car safety)
1401 byte-compile-delete-errors (nth 1 safety)))))
1402
1403 ((and (eq (car-safe spec) 'warn) (boundp 'byte-compile-warnings))
1404 (if (eq byte-compile-warnings t)
1405 (setq byte-compile-warnings byte-compile-warning-types))
1406 (while (setq spec (cdr spec))
1407 (if (consp (car spec))
1408 (if (eq (cadar spec) 0)
1409 (setq byte-compile-warnings
1410 (delq (caar spec) byte-compile-warnings))
1411 (setq byte-compile-warnings
1412 (adjoin (caar spec) byte-compile-warnings)))))))
1413 nil)
1414
1415;;; Process any proclamations made before cl-macs was loaded.
1416(defvar cl-proclaims-deferred)
1417(let ((p (reverse cl-proclaims-deferred)))
1418 (while p (cl-do-proclaim (cl-pop p) t))
1419 (setq cl-proclaims-deferred nil))
1420
1421(defmacro declare (&rest specs)
1422 (if (cl-compiling-file)
1423 (while specs
1424 (if (listp cl-declare-stack) (cl-push (car specs) cl-declare-stack))
1425 (cl-do-proclaim (cl-pop specs) nil)))
1426 nil)
1427
1428
1429
1430;;; Generalized variables.
1431
1432(defmacro define-setf-method (func args &rest body)
1433 "(define-setf-method NAME ARGLIST BODY...): define a `setf' method.
1434This method shows how to handle `setf's to places of the form (NAME ARGS...).
1435The argument forms ARGS are bound according to ARGLIST, as if NAME were
1436going to be expanded as a macro, then the BODY forms are executed and must
1437return a list of five elements: a temporary-variables list, a value-forms
1438list, a store-variables list (of length one), a store-form, and an access-
1439form. See `defsetf' for a simpler way to define most setf-methods."
1440 (append '(eval-when (compile load eval))
1441 (if (stringp (car body))
1442 (list (list 'put (list 'quote func) '(quote setf-documentation)
1443 (cl-pop body))))
1444 (list (cl-transform-function-property
1445 func 'setf-method (cons args body)))))
1446
1447(defmacro defsetf (func arg1 &rest args)
1448 "(defsetf NAME FUNC): define a `setf' method.
1449This macro is an easy-to-use substitute for `define-setf-method' that works
1450well for simple place forms. In the simple `defsetf' form, `setf's of
1451the form (setf (NAME ARGS...) VAL) are transformed to function or macro
1452calls of the form (FUNC ARGS... VAL). Example: (defsetf aref aset).
1453Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
1454Here, the above `setf' call is expanded by binding the argument forms ARGS
1455according to ARGLIST, binding the value form VAL to STORE, then executing
1456BODY, which must return a Lisp form that does the necessary `setf' operation.
1457Actually, ARGLIST and STORE may be bound to temporary variables which are
1458introduced automatically to preserve proper execution order of the arguments.
1459Example: (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))."
1460 (if (listp arg1)
1461 (let* ((largs nil) (largsr nil)
1462 (temps nil) (tempsr nil)
1463 (restarg nil) (rest-temps nil)
1464 (store-var (car (prog1 (car args) (setq args (cdr args)))))
1465 (store-temp (intern (format "--%s--temp--" store-var)))
1466 (lets1 nil) (lets2 nil)
1467 (docstr nil) (p arg1))
1468 (if (stringp (car args))
1469 (setq docstr (prog1 (car args) (setq args (cdr args)))))
1470 (while (and p (not (eq (car p) '&aux)))
1471 (if (eq (car p) '&rest)
1472 (setq p (cdr p) restarg (car p))
1473 (or (memq (car p) '(&optional &key &allow-other-keys))
1474 (setq largs (cons (if (consp (car p)) (car (car p)) (car p))
1475 largs)
1476 temps (cons (intern (format "--%s--temp--" (car largs)))
1477 temps))))
1478 (setq p (cdr p)))
1479 (setq largs (nreverse largs) temps (nreverse temps))
1480 (if restarg
1481 (setq largsr (append largs (list restarg))
1482 rest-temps (intern (format "--%s--temp--" restarg))
1483 tempsr (append temps (list rest-temps)))
1484 (setq largsr largs tempsr temps))
1485 (let ((p1 largs) (p2 temps))
1486 (while p1
1487 (setq lets1 (cons (list (car p2)
1488 (list 'gensym (format "--%s--" (car p1))))
1489 lets1)
1490 lets2 (cons (list (car p1) (car p2)) lets2)
1491 p1 (cdr p1) p2 (cdr p2))))
1492 (if restarg (setq lets2 (cons (list restarg rest-temps) lets2)))
1493 (append (list 'define-setf-method func arg1)
1494 (and docstr (list docstr))
1495 (list
1496 (list 'let*
1497 (nreverse
1498 (cons (list store-temp
1499 (list 'gensym (format "--%s--" store-var)))
1500 (if restarg
1501 (append
1502 (list
1503 (list rest-temps
1504 (list 'mapcar '(quote gensym)
1505 restarg)))
1506 lets1)
1507 lets1)))
1508 (list 'list ; 'values
1509 (cons (if restarg 'list* 'list) tempsr)
1510 (cons (if restarg 'list* 'list) largsr)
1511 (list 'list store-temp)
1512 (cons 'let*
1513 (cons (nreverse
1514 (cons (list store-var store-temp)
1515 lets2))
1516 args))
1517 (cons (if restarg 'list* 'list)
1518 (cons (list 'quote func) tempsr)))))))
1519 (list 'defsetf func '(&rest args) '(store)
1520 (let ((call (list 'cons (list 'quote arg1)
1521 '(append args (list store)))))
1522 (if (car args)
1523 (list 'list '(quote progn) call 'store)
1524 call)))))
1525
1526;;; Some standard place types from Common Lisp.
1527(defsetf aref aset)
1528(defsetf car setcar)
1529(defsetf cdr setcdr)
1530(defsetf elt (seq n) (store)
1531 (list 'if (list 'listp seq) (list 'setcar (list 'nthcdr n seq) store)
1532 (list 'aset seq n store)))
1533(defsetf get put)
1534(defsetf get* (x y &optional d) (store) (list 'put x y store))
1535(defsetf gethash (x h &optional d) (store) (list 'cl-puthash x store h))
1536(defsetf nth (n x) (store) (list 'setcar (list 'nthcdr n x) store))
1537(defsetf subseq (seq start &optional end) (new)
1538 (list 'progn (list 'replace seq new ':start1 start ':end1 end) new))
1539(defsetf symbol-function fset)
1540(defsetf symbol-plist setplist)
1541(defsetf symbol-value set)
1542
1543;;; Various car/cdr aliases. Note that `cadr' is handled specially.
1544(defsetf first setcar)
1545(defsetf second (x) (store) (list 'setcar (list 'cdr x) store))
1546(defsetf third (x) (store) (list 'setcar (list 'cddr x) store))
1547(defsetf fourth (x) (store) (list 'setcar (list 'cdddr x) store))
1548(defsetf fifth (x) (store) (list 'setcar (list 'nthcdr 4 x) store))
1549(defsetf sixth (x) (store) (list 'setcar (list 'nthcdr 5 x) store))
1550(defsetf seventh (x) (store) (list 'setcar (list 'nthcdr 6 x) store))
1551(defsetf eighth (x) (store) (list 'setcar (list 'nthcdr 7 x) store))
1552(defsetf ninth (x) (store) (list 'setcar (list 'nthcdr 8 x) store))
1553(defsetf tenth (x) (store) (list 'setcar (list 'nthcdr 9 x) store))
1554(defsetf rest setcdr)
1555
1556;;; Some more Emacs-related place types.
1557(defsetf buffer-file-name set-visited-file-name t)
1558(defsetf buffer-modified-p set-buffer-modified-p t)
1559(defsetf buffer-name rename-buffer t)
1560(defsetf buffer-string () (store)
1561 (list 'progn '(erase-buffer) (list 'insert store)))
1562(defsetf buffer-substring cl-set-buffer-substring)
1563(defsetf current-buffer set-buffer)
1564(defsetf current-case-table set-case-table)
1565(defsetf current-column move-to-column t)
1566(defsetf current-global-map use-global-map t)
1567(defsetf current-input-mode () (store)
1568 (list 'progn (list 'apply 'set-input-mode store) store))
1569(defsetf current-local-map use-local-map t)
1570(defsetf current-window-configuration set-window-configuration t)
1571(defsetf default-file-modes set-default-file-modes t)
1572(defsetf default-value set-default)
1573(defsetf documentation-property put)
1574(defsetf extent-data set-extent-data)
1575(defsetf extent-face set-extent-face)
1576(defsetf extent-priority set-extent-priority)
1577(defsetf extent-end-position (ext) (store)
1578 (list 'progn (list 'set-extent-endpoints (list 'extent-start-position ext)
1579 store) store))
1580(defsetf extent-start-position (ext) (store)
1581 (list 'progn (list 'set-extent-endpoints store
1582 (list 'extent-end-position ext)) store))
1583(defsetf face-background (f &optional s) (x) (list 'set-face-background f x s))
1584(defsetf face-background-pixmap (f &optional s) (x)
1585 (list 'set-face-background-pixmap f x s))
1586(defsetf face-font (f &optional s) (x) (list 'set-face-font f x s))
1587(defsetf face-foreground (f &optional s) (x) (list 'set-face-foreground f x s))
1588(defsetf face-underline-p (f &optional s) (x)
1589 (list 'set-face-underline-p f x s))
1590(defsetf file-modes set-file-modes t)
1591(defsetf frame-height set-screen-height t)
1592(defsetf frame-parameters modify-frame-parameters t)
1593(defsetf frame-visible-p cl-set-frame-visible-p)
1594(defsetf frame-width set-screen-width t)
1595(defsetf getenv setenv t)
1596(defsetf get-register set-register)
1597(defsetf global-key-binding global-set-key)
1598(defsetf keymap-parent set-keymap-parent)
1599(defsetf local-key-binding local-set-key)
1600(defsetf mark set-mark t)
1601(defsetf mark-marker set-mark t)
1602(defsetf marker-position set-marker t)
1603(defsetf match-data store-match-data t)
1604(defsetf mouse-position (scr) (store)
1605 (list 'set-mouse-position scr (list 'car store) (list 'cadr store)
1606 (list 'cddr store)))
1607(defsetf overlay-get overlay-put)
1608(defsetf overlay-start (ov) (store)
1609 (list 'progn (list 'move-overlay ov store (list 'overlay-end ov)) store))
1610(defsetf overlay-end (ov) (store)
1611 (list 'progn (list 'move-overlay ov (list 'overlay-start ov) store) store))
1612(defsetf point goto-char)
1613(defsetf point-marker goto-char t)
1614(defsetf point-max () (store)
1615 (list 'progn (list 'narrow-to-region '(point-min) store) store))
1616(defsetf point-min () (store)
1617 (list 'progn (list 'narrow-to-region store '(point-max)) store))
1618(defsetf process-buffer set-process-buffer)
1619(defsetf process-filter set-process-filter)
1620(defsetf process-sentinel set-process-sentinel)
1621(defsetf read-mouse-position (scr) (store)
1622 (list 'set-mouse-position scr (list 'car store) (list 'cdr store)))
1623(defsetf screen-height set-screen-height t)
1624(defsetf screen-width set-screen-width t)
1625(defsetf selected-window select-window)
1626(defsetf selected-screen select-screen)
1627(defsetf selected-frame select-frame)
1628(defsetf standard-case-table set-standard-case-table)
1629(defsetf syntax-table set-syntax-table)
1630(defsetf visited-file-modtime set-visited-file-modtime t)
1631(defsetf window-buffer set-window-buffer t)
1632(defsetf window-display-table set-window-display-table t)
1633(defsetf window-dedicated-p set-window-dedicated-p t)
1634(defsetf window-height () (store)
1635 (list 'progn (list 'enlarge-window (list '- store '(window-height))) store))
1636(defsetf window-hscroll set-window-hscroll)
1637(defsetf window-point set-window-point)
1638(defsetf window-start set-window-start)
1639(defsetf window-width () (store)
1640 (list 'progn (list 'enlarge-window (list '- store '(window-width)) t) store))
1641(defsetf x-get-cutbuffer x-store-cutbuffer t)
1642(defsetf x-get-cut-buffer x-store-cut-buffer t) ; groan.
1643(defsetf x-get-secondary-selection x-own-secondary-selection t)
1644(defsetf x-get-selection x-own-selection t)
1645
1646;;; More complex setf-methods.
1647;;; These should take &environment arguments, but since full arglists aren't
1648;;; available while compiling cl-macs, we fake it by referring to the global
1649;;; variable cl-macro-environment directly.
1650
1651(define-setf-method apply (func arg1 &rest rest)
1652 (or (and (memq (car-safe func) '(quote function function*))
1653 (symbolp (car-safe (cdr-safe func))))
1654 (error "First arg to apply in setf is not (function SYM): %s" func))
1655 (let* ((form (cons (nth 1 func) (cons arg1 rest)))
1656 (method (get-setf-method form cl-macro-environment)))
1657 (list (car method) (nth 1 method) (nth 2 method)
1658 (cl-setf-make-apply (nth 3 method) (cadr func) (car method))
1659 (cl-setf-make-apply (nth 4 method) (cadr func) (car method)))))
1660
1661(defun cl-setf-make-apply (form func temps)
1662 (if (eq (car form) 'progn)
1663 (list* 'progn (cl-setf-make-apply (cadr form) func temps) (cddr form))
1664 (or (equal (last form) (last temps))
1665 (error "%s is not suitable for use with setf-of-apply" func))
1666 (list* 'apply (list 'quote (car form)) (cdr form))))
1667
1668(define-setf-method nthcdr (n place)
1669 (let ((method (get-setf-method place cl-macro-environment))
1670 (n-temp (gensym "--nthcdr-n--"))
1671 (store-temp (gensym "--nthcdr-store--")))
1672 (list (cons n-temp (car method))
1673 (cons n (nth 1 method))
1674 (list store-temp)
1675 (list 'let (list (list (car (nth 2 method))
1676 (list 'cl-set-nthcdr n-temp (nth 4 method)
1677 store-temp)))
1678 (nth 3 method) store-temp)
1679 (list 'nthcdr n-temp (nth 4 method)))))
1680
1681(define-setf-method getf (place tag &optional def)
1682 (let ((method (get-setf-method place cl-macro-environment))
1683 (tag-temp (gensym "--getf-tag--"))
1684 (def-temp (gensym "--getf-def--"))
1685 (store-temp (gensym "--getf-store--")))
1686 (list (append (car method) (list tag-temp def-temp))
1687 (append (nth 1 method) (list tag def))
1688 (list store-temp)
1689 (list 'let (list (list (car (nth 2 method))
1690 (list 'cl-set-getf (nth 4 method)
1691 tag-temp store-temp)))
1692 (nth 3 method) store-temp)
1693 (list 'getf (nth 4 method) tag-temp def-temp))))
1694
1695(define-setf-method substring (place from &optional to)
1696 (let ((method (get-setf-method place cl-macro-environment))
1697 (from-temp (gensym "--substring-from--"))
1698 (to-temp (gensym "--substring-to--"))
1699 (store-temp (gensym "--substring-store--")))
1700 (list (append (car method) (list from-temp to-temp))
1701 (append (nth 1 method) (list from to))
1702 (list store-temp)
1703 (list 'let (list (list (car (nth 2 method))
1704 (list 'cl-set-substring (nth 4 method)
1705 from-temp to-temp store-temp)))
1706 (nth 3 method) store-temp)
1707 (list 'substring (nth 4 method) from-temp to-temp))))
1708
1709;;; Getting and optimizing setf-methods.
1710(defun get-setf-method (place &optional env)
1711 "Return a list of five values describing the setf-method for PLACE.
1712PLACE may be any Lisp form which can appear as the PLACE argument to
1713a macro like `setf' or `incf'."
1714 (if (symbolp place)
1715 (let ((temp (gensym "--setf--")))
1716 (list nil nil (list temp) (list 'setq place temp) place))
1717 (or (and (symbolp (car place))
1718 (let* ((func (car place))
1719 (name (symbol-name func))
1720 (method (get func 'setf-method))
1721 (case-fold-search nil))
1722 (or (and method
1723 (let ((cl-macro-environment env))
1724 (setq method (apply method (cdr place))))
1725 (if (and (consp method) (= (length method) 5))
1726 method
1727 (error "Setf-method for %s returns malformed method"
1728 func)))
1729 (and (string-match "\\`c[ad][ad][ad]?[ad]?r\\'" name)
1730 (get-setf-method (compiler-macroexpand place)))
1731 (and (eq func 'edebug-after)
1732 (get-setf-method (nth (1- (length place)) place)
1733 env)))))
1734 (if (eq place (setq place (macroexpand place env)))
1735 (if (and (symbolp (car place)) (fboundp (car place))
1736 (symbolp (symbol-function (car place))))
1737 (get-setf-method (cons (symbol-function (car place))
1738 (cdr place)) env)
1739 (error "No setf-method known for %s" (car place)))
1740 (get-setf-method place env)))))
1741
1742(defun cl-setf-do-modify (place opt-expr)
1743 (let* ((method (get-setf-method place cl-macro-environment))
1744 (temps (car method)) (values (nth 1 method))
1745 (lets nil) (subs nil)
1746 (optimize (and (not (eq opt-expr 'no-opt))
1747 (or (and (not (eq opt-expr 'unsafe))
1748 (cl-safe-expr-p opt-expr))
1749 (cl-setf-simple-store-p (car (nth 2 method))
1750 (nth 3 method)))))
1751 (simple (and optimize (consp place) (cl-simple-exprs-p (cdr place)))))
1752 (while values
1753 (if (or simple (cl-const-expr-p (car values)))
1754 (cl-push (cons (cl-pop temps) (cl-pop values)) subs)
1755 (cl-push (list (cl-pop temps) (cl-pop values)) lets)))
1756 (list (nreverse lets)
1757 (cons (car (nth 2 method)) (sublis subs (nth 3 method)))
1758 (sublis subs (nth 4 method)))))
1759
1760(defun cl-setf-do-store (spec val)
1761 (let ((sym (car spec))
1762 (form (cdr spec)))
1763 (if (or (cl-const-expr-p val)
1764 (and (cl-simple-expr-p val) (eq (cl-expr-contains form sym) 1))
1765 (cl-setf-simple-store-p sym form))
1766 (subst val sym form)
1767 (list 'let (list (list sym val)) form))))
1768
1769(defun cl-setf-simple-store-p (sym form)
1770 (and (consp form) (eq (cl-expr-contains form sym) 1)
1771 (eq (nth (1- (length form)) form) sym)
1772 (symbolp (car form)) (fboundp (car form))
1773 (not (eq (car-safe (symbol-function (car form))) 'macro))))
1774
1775;;; The standard modify macros.
1776(defmacro setf (&rest args)
1777 "(setf PLACE VAL PLACE VAL ...): set each PLACE to the value of its VAL.
1778This is a generalized version of `setq'; the PLACEs may be symbolic
1779references such as (car x) or (aref x i), as well as plain symbols.
1780For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
1781The return value is the last VAL in the list."
1782 (if (cdr (cdr args))
1783 (let ((sets nil))
1784 (while args (cl-push (list 'setf (cl-pop args) (cl-pop args)) sets))
1785 (cons 'progn (nreverse sets)))
1786 (if (symbolp (car args))
1787 (and args (cons 'setq args))
1788 (let* ((method (cl-setf-do-modify (car args) (nth 1 args)))
1789 (store (cl-setf-do-store (nth 1 method) (nth 1 args))))
1790 (if (car method) (list 'let* (car method) store) store)))))
1791
1792(defmacro psetf (&rest args)
1793 "(psetf PLACE VAL PLACE VAL ...): set PLACEs to the values VALs in parallel.
1794This is like `setf', except that all VAL forms are evaluated (in order)
1795before assigning any PLACEs to the corresponding values."
1796 (let ((p args) (simple t) (vars nil))
1797 (while p
1798 (if (or (not (symbolp (car p))) (cl-expr-depends-p (nth 1 p) vars))
1799 (setq simple nil))
1800 (if (memq (car p) vars)
1801 (error "Destination duplicated in psetf: %s" (car p)))
1802 (cl-push (cl-pop p) vars)
1803 (or p (error "Odd number of arguments to psetf"))
1804 (cl-pop p))
1805 (if simple
1806 (list 'progn (cons 'setf args) nil)
1807 (setq args (reverse args))
1808 (let ((expr (list 'setf (cadr args) (car args))))
1809 (while (setq args (cddr args))
1810 (setq expr (list 'setf (cadr args) (list 'prog1 (car args) expr))))
1811 (list 'progn expr nil)))))
1812
1813(defun cl-do-pop (place)
1814 (if (cl-simple-expr-p place)
1815 (list 'prog1 (list 'car place) (list 'setf place (list 'cdr place)))
1816 (let* ((method (cl-setf-do-modify place t))
1817 (temp (gensym "--pop--")))
1818 (list 'let*
1819 (append (car method)
1820 (list (list temp (nth 2 method))))
1821 (list 'prog1
1822 (list 'car temp)
1823 (cl-setf-do-store (nth 1 method) (list 'cdr temp)))))))
1824
1825(defmacro remf (place tag)
1826 "(remf PLACE TAG): remove TAG from property list PLACE.
1827PLACE may be a symbol, or any generalized variable allowed by `setf'.
1828The form returns true if TAG was found and removed, nil otherwise."
1829 (let* ((method (cl-setf-do-modify place t))
1830 (tag-temp (and (not (cl-const-expr-p tag)) (gensym "--remf-tag--")))
1831 (val-temp (and (not (cl-simple-expr-p place))
1832 (gensym "--remf-place--")))
1833 (ttag (or tag-temp tag))
1834 (tval (or val-temp (nth 2 method))))
1835 (list 'let*
1836 (append (car method)
1837 (and val-temp (list (list val-temp (nth 2 method))))
1838 (and tag-temp (list (list tag-temp tag))))
1839 (list 'if (list 'eq ttag (list 'car tval))
1840 (list 'progn
1841 (cl-setf-do-store (nth 1 method) (list 'cddr tval))
1842 t)
1843 (list 'cl-do-remf tval ttag)))))
1844
1845(defmacro shiftf (place &rest args)
1846 "(shiftf PLACE PLACE... VAL): shift left among PLACEs.
1847Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
1848Each PLACE may be a symbol, or any generalized variable allowed by `setf'."
1849 (if (not (memq nil (mapcar 'symbolp (butlast (cons place args)))))
1850 (list* 'prog1 place
1851 (let ((sets nil))
1852 (while args
1853 (cl-push (list 'setq place (car args)) sets)
1854 (setq place (cl-pop args)))
1855 (nreverse sets)))
1856 (let* ((places (reverse (cons place args)))
1857 (form (cl-pop places)))
1858 (while places
1859 (let ((method (cl-setf-do-modify (cl-pop places) 'unsafe)))
1860 (setq form (list 'let* (car method)
1861 (list 'prog1 (nth 2 method)
1862 (cl-setf-do-store (nth 1 method) form))))))
1863 form)))
1864
1865(defmacro rotatef (&rest args)
1866 "(rotatef PLACE...): rotate left among PLACEs.
1867Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
1868Each PLACE may be a symbol, or any generalized variable allowed by `setf'."
1869 (if (not (memq nil (mapcar 'symbolp args)))
1870 (and (cdr args)
1871 (let ((sets nil)
1872 (first (car args)))
1873 (while (cdr args)
1874 (setq sets (nconc sets (list (cl-pop args) (car args)))))
1875 (nconc (list 'psetf) sets (list (car args) first))))
1876 (let* ((places (reverse args))
1877 (temp (gensym "--rotatef--"))
1878 (form temp))
1879 (while (cdr places)
1880 (let ((method (cl-setf-do-modify (cl-pop places) 'unsafe)))
1881 (setq form (list 'let* (car method)
1882 (list 'prog1 (nth 2 method)
1883 (cl-setf-do-store (nth 1 method) form))))))
1884 (let ((method (cl-setf-do-modify (car places) 'unsafe)))
1885 (list 'let* (append (car method) (list (list temp (nth 2 method))))
1886 (cl-setf-do-store (nth 1 method) form) nil)))))
1887
1888(defmacro letf (bindings &rest body)
1889 "(letf ((PLACE VALUE) ...) BODY...): temporarily bind to PLACEs.
1890This is the analogue of `let', but with generalized variables (in the
1891sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
1892VALUE, then the BODY forms are executed. On exit, either normally or
1893because of a `throw' or error, the PLACEs are set back to their original
1894values. Note that this macro is *not* available in Common Lisp.
1895As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
1896the PLACE is not modified before executing BODY."
1897 (if (and (not (cdr bindings)) (cdar bindings) (symbolp (caar bindings)))
1898 (list* 'let bindings body)
1899 (let ((lets nil) (sets nil)
1900 (unsets nil) (rev (reverse bindings)))
1901 (while rev
1902 (let* ((place (if (symbolp (caar rev))
1903 (list 'symbol-value (list 'quote (caar rev)))
1904 (caar rev)))
1905 (value (cadar rev))
1906 (method (cl-setf-do-modify place 'no-opt))
1907 (save (gensym "--letf-save--"))
1908 (bound (and (memq (car place) '(symbol-value symbol-function))
1909 (gensym "--letf-bound--")))
1910 (temp (and (not (cl-const-expr-p value)) (cdr bindings)
1911 (gensym "--letf-val--"))))
1912 (setq lets (nconc (car method)
1913 (if bound
1914 (list (list bound
1915 (list (if (eq (car place)
1916 'symbol-value)
1917 'boundp 'fboundp)
1918 (nth 1 (nth 2 method))))
1919 (list save (list 'and bound
1920 (nth 2 method))))
1921 (list (list save (nth 2 method))))
1922 (and temp (list (list temp value)))
1923 lets)
1924 body (list
1925 (list 'unwind-protect
1926 (cons 'progn
1927 (if (cdr (car rev))
1928 (cons (cl-setf-do-store (nth 1 method)
1929 (or temp value))
1930 body)
1931 body))
1932 (if bound
1933 (list 'if bound
1934 (cl-setf-do-store (nth 1 method) save)
1935 (list (if (eq (car place) 'symbol-value)
1936 'makunbound 'fmakunbound)
1937 (nth 1 (nth 2 method))))
1938 (cl-setf-do-store (nth 1 method) save))))
1939 rev (cdr rev))))
1940 (list* 'let* lets body))))
1941
1942(defmacro letf* (bindings &rest body)
1943 "(letf* ((PLACE VALUE) ...) BODY...): temporarily bind to PLACEs.
1944This is the analogue of `let*', but with generalized variables (in the
1945sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
1946VALUE, then the BODY forms are executed. On exit, either normally or
1947because of a `throw' or error, the PLACEs are set back to their original
1948values. Note that this macro is *not* available in Common Lisp.
1949As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
1950the PLACE is not modified before executing BODY."
1951 (if (null bindings)
1952 (cons 'progn body)
1953 (setq bindings (reverse bindings))
1954 (while bindings
1955 (setq body (list (list* 'letf (list (cl-pop bindings)) body))))
1956 (car body)))
1957
1958(defmacro callf (func place &rest args)
1959 "(callf FUNC PLACE ARGS...): set PLACE to (FUNC PLACE ARGS...).
1960FUNC should be an unquoted function name. PLACE may be a symbol,
1961or any generalized variable allowed by `setf'."
1962 (let* ((method (cl-setf-do-modify place (cons 'list args)))
1963 (rargs (cons (nth 2 method) args)))
1964 (list 'let* (car method)
1965 (cl-setf-do-store (nth 1 method)
1966 (if (symbolp func) (cons func rargs)
1967 (list* 'funcall (list 'function func)
1968 rargs))))))
1969
1970(defmacro callf2 (func arg1 place &rest args)
1971 "(callf2 FUNC ARG1 PLACE ARGS...): set PLACE to (FUNC ARG1 PLACE ARGS...).
1972Like `callf', but PLACE is the second argument of FUNC, not the first."
1973 (if (and (cl-safe-expr-p arg1) (cl-simple-expr-p place) (symbolp func))
1974 (list 'setf place (list* func arg1 place args))
1975 (let* ((method (cl-setf-do-modify place (cons 'list args)))
1976 (temp (and (not (cl-const-expr-p arg1)) (gensym "--arg1--")))
1977 (rargs (list* (or temp arg1) (nth 2 method) args)))
1978 (list 'let* (append (and temp (list (list temp arg1))) (car method))
1979 (cl-setf-do-store (nth 1 method)
1980 (if (symbolp func) (cons func rargs)
1981 (list* 'funcall (list 'function func)
1982 rargs)))))))
1983
1984(defmacro define-modify-macro (name arglist func &optional doc)
1985 "(define-modify-macro NAME ARGLIST FUNC): define a `setf'-like modify macro.
1986If NAME is called, it combines its PLACE argument with the other arguments
1987from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)"
1988 (if (memq '&key arglist) (error "&key not allowed in define-modify-macro"))
1989 (let ((place (gensym "--place--")))
1990 (list 'defmacro* name (cons place arglist) doc
1991 (list* (if (memq '&rest arglist) 'list* 'list)
1992 '(quote callf) (list 'quote func) place
1993 (cl-arglist-args arglist)))))
1994
1995
1996;;; Structures.
1997
1998(defmacro defstruct (struct &rest descs)
1999 "(defstruct (NAME OPTIONS...) (SLOT SLOT-OPTS...)...): define a struct type.
2000This macro defines a new Lisp data type called NAME, which contains data
2001stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
2002copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors."
2003 (let* ((name (if (consp struct) (car struct) struct))
2004 (opts (cdr-safe struct))
2005 (slots nil)
2006 (defaults nil)
2007 (conc-name (concat (symbol-name name) "-"))
2008 (constructor (intern (format "make-%s" name)))
2009 (constrs nil)
2010 (copier (intern (format "copy-%s" name)))
2011 (predicate (intern (format "%s-p" name)))
2012 (print-func nil) (print-auto nil)
2013 (safety (if (cl-compiling-file) cl-optimize-safety 3))
2014 (include nil)
2015 (tag (intern (format "cl-struct-%s" name)))
2016 (tag-symbol (intern (format "cl-struct-%s-tags" name)))
2017 (include-descs nil)
2018 (include-tag-symbol nil)
2019 (side-eff nil)
2020 (type nil)
2021 (named nil)
2022 (forms nil)
2023 pred-form pred-check)
2024 (if (stringp (car descs))
2025 (cl-push (list 'put (list 'quote name) '(quote structure-documentation)
2026 (cl-pop descs)) forms))
2027 (setq descs (cons '(cl-tag-slot)
2028 (mapcar (function (lambda (x) (if (consp x) x (list x))))
2029 descs)))
2030 (while opts
2031 (let ((opt (if (consp (car opts)) (caar opts) (car opts)))
2032 (args (cdr-safe (cl-pop opts))))
2033 (cond ((eq opt ':conc-name)
2034 (if args
2035 (setq conc-name (if (car args)
2036 (symbol-name (car args)) ""))))
2037 ((eq opt ':constructor)
2038 (if (cdr args)
2039 (cl-push args constrs)
2040 (if args (setq constructor (car args)))))
2041 ((eq opt ':copier)
2042 (if args (setq copier (car args))))
2043 ((eq opt ':predicate)
2044 (if args (setq predicate (car args))))
2045 ((eq opt ':include)
2046 (setq include (car args)
2047 include-descs (mapcar (function
2048 (lambda (x)
2049 (if (consp x) x (list x))))
2050 (cdr args))
2051 include-tag-symbol (intern (format "cl-struct-%s-tags"
2052 include))))
2053 ((eq opt ':print-function)
2054 (setq print-func (car args)))
2055 ((eq opt ':type)
2056 (setq type (car args)))
2057 ((eq opt ':named)
2058 (setq named t))
2059 ((eq opt ':initial-offset)
2060 (setq descs (nconc (make-list (car args) '(cl-skip-slot))
2061 descs)))
2062 (t
2063 (error "Slot option %s unrecognized" opt)))))
2064 (if print-func
2065 (setq print-func (list 'progn
2066 (list 'funcall (list 'function print-func)
2067 'cl-x 'cl-s 'cl-n) t))
2068 (or type (and include (not (get include 'cl-struct-print)))
2069 (setq print-auto t
2070 print-func (and (or (not (or include type)) (null print-func))
2071 (list 'progn
2072 (list 'princ (format "#S(%s" name)
2073 'cl-s))))))
2074 (if include
2075 (let ((inc-type (get include 'cl-struct-type))
2076 (old-descs (get include 'cl-struct-slots)))
2077 (or inc-type (error "%s is not a struct name" include))
2078 (and type (not (eq (car inc-type) type))
2079 (error ":type disagrees with :include for %s" name))
2080 (while include-descs
2081 (setcar (memq (or (assq (caar include-descs) old-descs)
2082 (error "No slot %s in included struct %s"
2083 (caar include-descs) include))
2084 old-descs)
2085 (cl-pop include-descs)))
2086 (setq descs (append old-descs (delq (assq 'cl-tag-slot descs) descs))
2087 type (car inc-type)
2088 named (assq 'cl-tag-slot descs))
2089 (if (cadr inc-type) (setq tag name named t))
2090 (cl-push (list 'pushnew (list 'quote tag) include-tag-symbol)
2091 forms))
2092 (if type
2093 (progn
2094 (or (memq type '(vector list))
2095 (error "Illegal :type specifier: %s" type))
2096 (if named (setq tag name)))
2097 (setq type 'vector named 'true)))
2098 (or named (setq descs (delq (assq 'cl-tag-slot descs) descs)))
2099 (cl-push (list 'defvar tag-symbol) forms)
2100 (setq pred-form (and named
2101 (let ((pos (- (length descs)
2102 (length (memq (assq 'cl-tag-slot descs)
2103 descs)))))
2104 (if (eq type 'vector)
2105 (list 'and '(vectorp cl-x)
2106 (list '>= '(length cl-x) (length descs))
2107 (list 'memq (list 'aref 'cl-x pos)
2108 tag-symbol))
2109 (if (= pos 0)
2110 (list 'memq '(car-safe cl-x) tag-symbol)
2111 (list 'and '(consp cl-x)
2112 (list 'memq (list 'nth pos 'cl-x)
2113 tag-symbol))))))
2114 pred-check (and pred-form (> safety 0)
2115 (if (and (eq (caadr pred-form) 'vectorp)
2116 (= safety 1))
2117 (cons 'and (cdddr pred-form)) pred-form)))
2118 (let ((pos 0) (descp descs))
2119 (while descp
2120 (let* ((desc (cl-pop descp))
2121 (slot (car desc)))
2122 (if (memq slot '(cl-tag-slot cl-skip-slot))
2123 (progn
2124 (cl-push nil slots)
2125 (cl-push (and (eq slot 'cl-tag-slot) (list 'quote tag))
2126 defaults))
2127 (if (assq slot descp)
2128 (error "Duplicate slots named %s in %s" slot name))
2129 (let ((accessor (intern (format "%s%s" conc-name slot))))
2130 (cl-push slot slots)
2131 (cl-push (nth 1 desc) defaults)
2132 (cl-push (list*
2133 'defsubst* accessor '(cl-x)
2134 (append
2135 (and pred-check
2136 (list (list 'or pred-check
2137 (list 'error
2138 (format "%s accessing a non-%s"
2139 accessor name)
2140 'cl-x))))
2141 (list (if (eq type 'vector) (list 'aref 'cl-x pos)
2142 (if (= pos 0) '(car cl-x)
2143 (list 'nth pos 'cl-x)))))) forms)
2144 (cl-push (cons accessor t) side-eff)
2145 (cl-push (list 'define-setf-method accessor '(cl-x)
2146 (if (cadr (memq ':read-only (cddr desc)))
2147 (list 'error (format "%s is a read-only slot"
2148 accessor))
2149 (list 'cl-struct-setf-expander 'cl-x
2150 (list 'quote name) (list 'quote accessor)
2151 (and pred-check (list 'quote pred-check))
2152 pos)))
2153 forms)
2154 (if print-auto
2155 (nconc print-func
2156 (list (list 'princ (format " %s" slot) 'cl-s)
2157 (list 'prin1 (list accessor 'cl-x) 'cl-s)))))))
2158 (setq pos (1+ pos))))
2159 (setq slots (nreverse slots)
2160 defaults (nreverse defaults))
2161 (and predicate pred-form
2162 (progn (cl-push (list 'defsubst* predicate '(cl-x)
2163 (if (eq (car pred-form) 'and)
2164 (append pred-form '(t))
2165 (list 'and pred-form t))) forms)
2166 (cl-push (cons predicate 'error-free) side-eff)))
2167 (and copier
2168 (progn (cl-push (list 'defun copier '(x) '(copy-sequence x)) forms)
2169 (cl-push (cons copier t) side-eff)))
2170 (if constructor
2171 (cl-push (list constructor
2172 (cons '&key (delq nil (copy-sequence slots))))
2173 constrs))
2174 (while constrs
2175 (let* ((name (caar constrs))
2176 (args (cadr (cl-pop constrs)))
2177 (anames (cl-arglist-args args))
2178 (make (mapcar* (function (lambda (s d) (if (memq s anames) s d)))
2179 slots defaults)))
2180 (cl-push (list 'defsubst* name
2181 (list* '&cl-defs (list 'quote (cons nil descs)) args)
2182 (cons type make)) forms)
2183 (if (cl-safe-expr-p (cons 'progn (mapcar 'second descs)))
2184 (cl-push (cons name t) side-eff))))
2185 (if print-auto (nconc print-func (list '(princ ")" cl-s) t)))
2186 (if print-func
2187 (cl-push (list 'push
2188 (list 'function
2189 (list 'lambda '(cl-x cl-s cl-n)
2190 (list 'and pred-form print-func)))
2191 'custom-print-functions) forms))
2192 (cl-push (list 'setq tag-symbol (list 'list (list 'quote tag))) forms)
2193 (cl-push (list* 'eval-when '(compile load eval)
2194 (list 'put (list 'quote name) '(quote cl-struct-slots)
2195 (list 'quote descs))
2196 (list 'put (list 'quote name) '(quote cl-struct-type)
2197 (list 'quote (list type (eq named t))))
2198 (list 'put (list 'quote name) '(quote cl-struct-print)
2199 print-auto)
2200 (mapcar (function (lambda (x)
2201 (list 'put (list 'quote (car x))
2202 '(quote side-effect-free)
2203 (list 'quote (cdr x)))))
2204 side-eff))
2205 forms)
2206 (cons 'progn (nreverse (cons (list 'quote name) forms)))))
2207
2208(defun cl-struct-setf-expander (x name accessor pred-form pos)
2209 (let* ((temp (gensym "--x--")) (store (gensym "--store--")))
2210 (list (list temp) (list x) (list store)
2211 (append '(progn)
2212 (and pred-form
2213 (list (list 'or (subst temp 'cl-x pred-form)
2214 (list 'error
2215 (format
2216 "%s storing a non-%s" accessor name)
2217 temp))))
2218 (list (if (eq (car (get name 'cl-struct-type)) 'vector)
2219 (list 'aset temp pos store)
2220 (list 'setcar
2221 (if (<= pos 5)
2222 (let ((xx temp))
2223 (while (>= (setq pos (1- pos)) 0)
2224 (setq xx (list 'cdr xx)))
2225 xx)
2226 (list 'nthcdr pos temp))
2227 store))))
2228 (list accessor temp))))
2229
2230
2231;;; Types and assertions.
2232
2233(defmacro deftype (name args &rest body)
2234 "(deftype NAME ARGLIST BODY...): define NAME as a new data type.
2235The type name can then be used in `typecase', `check-type', etc."
2236 (list 'eval-when '(compile load eval)
2237 (cl-transform-function-property
2238 name 'cl-deftype-handler (cons (list* '&cl-defs ''('*) args) body))))
2239
2240(defun cl-make-type-test (val type)
2241 (if (memq type '(character string-char)) (setq type '(integer 0 255)))
2242 (if (symbolp type)
2243 (cond ((get type 'cl-deftype-handler)
2244 (cl-make-type-test val (funcall (get type 'cl-deftype-handler))))
2245 ((memq type '(nil t)) type)
2246 ((eq type 'null) (list 'null val))
2247 ((eq type 'float) (list 'floatp-safe val))
2248 ((eq type 'real) (list 'numberp val))
2249 ((eq type 'fixnum) (list 'integerp val))
2250 (t
2251 (let* ((name (symbol-name type))
2252 (namep (intern (concat name "p"))))
2253 (if (fboundp namep) (list namep val)
2254 (list (intern (concat name "-p")) val)))))
2255 (cond ((get (car type) 'cl-deftype-handler)
2256 (cl-make-type-test val (apply (get (car type) 'cl-deftype-handler)
2257 (cdr type))))
2258 ((memq (car-safe type) '(integer float real number))
2259 (delq t (list 'and (cl-make-type-test val (car type))
2260 (if (memq (cadr type) '(* nil)) t
2261 (if (consp (cadr type)) (list '> val (caadr type))
2262 (list '>= val (cadr type))))
2263 (if (memq (caddr type) '(* nil)) t
2264 (if (consp (caddr type)) (list '< val (caaddr type))
2265 (list '<= val (caddr type)))))))
2266 ((memq (car-safe type) '(and or not))
2267 (cons (car type)
2268 (mapcar (function (lambda (x) (cl-make-type-test val x)))
2269 (cdr type))))
2270 ((memq (car-safe type) '(member member*))
2271 (list 'and (list 'member* val (list 'quote (cdr type))) t))
2272 ((eq (car-safe type) 'satisfies) (list (cadr type) val))
2273 (t (error "Bad type spec: %s" type)))))
2274
2275(defun typep (val type) ; See compiler macro below.
2276 "Check that OBJECT is of type TYPE.
2277TYPE is a Common Lisp-style type specifier."
2278 (eval (cl-make-type-test 'val type)))
2279
2280(defmacro check-type (form type &optional string)
2281 "Verify that FORM is of type TYPE; signal an error if not.
2282STRING is an optional description of the desired type."
2283 (and (or (not (cl-compiling-file))
2284 (< cl-optimize-speed 3) (= cl-optimize-safety 3))
2285 (let* ((temp (if (cl-simple-expr-p form 3) form (gensym)))
2286 (body (list 'or (cl-make-type-test temp type)
2287 (list 'signal '(quote wrong-type-argument)
2288 (list 'list (or string (list 'quote type))
2289 temp (list 'quote form))))))
2290 (if (eq temp form) (list 'progn body nil)
2291 (list 'let (list (list temp form)) body nil)))))
2292
2293(defmacro assert (form &optional show-args string &rest args)
2294 "Verify that FORM returns non-nil; signal an error if not.
2295Second arg SHOW-ARGS means to include arguments of FORM in message.
2296Other args STRING and ARGS... are arguments to be passed to `error'.
2297They are not evaluated unless the assertion fails. If STRING is
2298omitted, a default message listing FORM itself is used."
2299 (and (or (not (cl-compiling-file))
2300 (< cl-optimize-speed 3) (= cl-optimize-safety 3))
2301 (let ((sargs (and show-args (delq nil (mapcar
2302 (function
2303 (lambda (x)
2304 (and (not (cl-const-expr-p x))
2305 x))) (cdr form))))))
2306 (list 'progn
2307 (list 'or form
2308 (if string
2309 (list* 'error string (append sargs args))
2310 (list 'signal '(quote cl-assertion-failed)
2311 (list* 'list (list 'quote form) sargs))))
2312 nil))))
2313
2314(defmacro ignore-errors (&rest body)
2315 "Execute FORMS; if an error occurs, return nil.
2316Otherwise, return result of last FORM."
2317 (let ((err (gensym)))
2318 (list 'condition-case err (cons 'progn body) '(error nil))))
2319
2320
2321;;; Some predicates for analyzing Lisp forms. These are used by various
2322;;; macro expanders to optimize the results in certain common cases.
2323
2324(defconst cl-simple-funcs '(car cdr nth aref elt if and or + - 1+ 1- min max
2325 car-safe cdr-safe progn prog1 prog2))
2326(defconst cl-safe-funcs '(* / % length memq list vector vectorp
2327 < > <= >= = error))
2328
2329;;; Check if no side effects, and executes quickly.
2330(defun cl-simple-expr-p (x &optional size)
2331 (or size (setq size 10))
2332 (if (and (consp x) (not (memq (car x) '(quote function function*))))
2333 (and (symbolp (car x))
2334 (or (memq (car x) cl-simple-funcs)
2335 (get (car x) 'side-effect-free))
2336 (progn
2337 (setq size (1- size))
2338 (while (and (setq x (cdr x))
2339 (setq size (cl-simple-expr-p (car x) size))))
2340 (and (null x) (>= size 0) size)))
2341 (and (> size 0) (1- size))))
2342
2343(defun cl-simple-exprs-p (xs)
2344 (while (and xs (cl-simple-expr-p (car xs)))
2345 (setq xs (cdr xs)))
2346 (not xs))
2347
2348;;; Check if no side effects.
2349(defun cl-safe-expr-p (x)
2350 (or (not (and (consp x) (not (memq (car x) '(quote function function*)))))
2351 (and (symbolp (car x))
2352 (or (memq (car x) cl-simple-funcs)
2353 (memq (car x) cl-safe-funcs)
2354 (get (car x) 'side-effect-free))
2355 (progn
2356 (while (and (setq x (cdr x)) (cl-safe-expr-p (car x))))
2357 (null x)))))
2358
2359;;; Check if constant (i.e., no side effects or dependencies).
2360(defun cl-const-expr-p (x)
2361 (cond ((consp x)
2362 (or (eq (car x) 'quote)
2363 (and (memq (car x) '(function function*))
2364 (or (symbolp (nth 1 x))
2365 (and (eq (car-safe (nth 1 x)) 'lambda) 'func)))))
2366 ((symbolp x) (and (memq x '(nil t)) t))
2367 (t t)))
2368
2369(defun cl-const-exprs-p (xs)
2370 (while (and xs (cl-const-expr-p (car xs)))
2371 (setq xs (cdr xs)))
2372 (not xs))
2373
2374(defun cl-const-expr-val (x)
2375 (and (eq (cl-const-expr-p x) t) (if (consp x) (nth 1 x) x)))
2376
2377(defun cl-expr-access-order (x v)
2378 (if (cl-const-expr-p x) v
2379 (if (consp x)
2380 (progn
2381 (while (setq x (cdr x)) (setq v (cl-expr-access-order (car x) v)))
2382 v)
2383 (if (eq x (car v)) (cdr v) '(t)))))
2384
2385;;; Count number of times X refers to Y. Return NIL for 0 times.
2386(defun cl-expr-contains (x y)
2387 (cond ((equal y x) 1)
2388 ((and (consp x) (not (memq (car-safe x) '(quote function function*))))
2389 (let ((sum 0))
2390 (while x
2391 (setq sum (+ sum (or (cl-expr-contains (cl-pop x) y) 0))))
2392 (and (> sum 0) sum)))
2393 (t nil)))
2394
2395(defun cl-expr-contains-any (x y)
2396 (while (and y (not (cl-expr-contains x (car y)))) (cl-pop y))
2397 y)
2398
2399;;; Check whether X may depend on any of the symbols in Y.
2400(defun cl-expr-depends-p (x y)
2401 (and (not (cl-const-expr-p x))
2402 (or (not (cl-safe-expr-p x)) (cl-expr-contains-any x y))))
2403
2404
2405;;; Compiler macros.
2406
2407(defmacro define-compiler-macro (func args &rest body)
2408 "(define-compiler-macro FUNC ARGLIST BODY...): Define a compiler-only macro.
2409This is like `defmacro', but macro expansion occurs only if the call to
2410FUNC is compiled (i.e., not interpreted). Compiler macros should be used
2411for optimizing the way calls to FUNC are compiled; the form returned by
2412BODY should do the same thing as a call to the normal function called
2413FUNC, though possibly more efficiently. Note that, like regular macros,
2414compiler macros are expanded repeatedly until no further expansions are
2415possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
2416original function call alone by declaring an initial `&whole foo' parameter
2417and then returning foo."
2418 (let ((p (if (listp args) args (list '&rest args))) (res nil))
2419 (while (consp p) (cl-push (cl-pop p) res))
2420 (setq args (nreverse res)) (setcdr res (and p (list '&rest p))))
2421 (list 'eval-when '(compile load eval)
2422 (cl-transform-function-property
2423 func 'cl-compiler-macro
2424 (cons (if (memq '&whole args) (delq '&whole args)
2425 (cons '--cl-whole-arg-- args)) body))
2426 (list 'or (list 'get (list 'quote func) '(quote byte-compile))
2427 (list 'put (list 'quote func) '(quote byte-compile)
2428 '(quote cl-byte-compile-compiler-macro)))))
2429
2430(defun compiler-macroexpand (form)
2431 (while
2432 (let ((func (car-safe form)) (handler nil))
2433 (while (and (symbolp func)
2434 (not (setq handler (get func 'cl-compiler-macro)))
2435 (fboundp func)
2436 (or (not (eq (car-safe (symbol-function func)) 'autoload))
2437 (load (nth 1 (symbol-function func)))))
2438 (setq func (symbol-function func)))
2439 (and handler
2440 (not (eq form (setq form (apply handler form (cdr form))))))))
2441 form)
2442
2443(defun cl-byte-compile-compiler-macro (form)
2444 (if (eq form (setq form (compiler-macroexpand form)))
2445 (byte-compile-normal-call form)
2446 (byte-compile-form form)))
2447
2448(defmacro defsubst* (name args &rest body)
2449 "(defsubst* NAME ARGLIST [DOCSTRING] BODY...): define NAME as a function.
2450Like `defun', except the function is automatically declared `inline',
2451ARGLIST allows full Common Lisp conventions, and BODY is implicitly
2452surrounded by (block NAME ...)."
2453 (let* ((argns (cl-arglist-args args)) (p argns)
2454 (pbody (cons 'progn body))
2455 (unsafe (not (cl-safe-expr-p pbody))))
2456 (while (and p (eq (cl-expr-contains args (car p)) 1)) (cl-pop p))
2457 (list 'progn
2458 (if p nil ; give up if defaults refer to earlier args
2459 (list 'define-compiler-macro name
2460 (list* '&whole 'cl-whole '&cl-quote args)
2461 (list* 'cl-defsubst-expand (list 'quote argns)
2462 (list 'quote (list* 'block name body))
2463 (not (or unsafe (cl-expr-access-order pbody argns)))
2464 (and (memq '&key args) 'cl-whole) unsafe argns)))
2465 (list* 'defun* name args body))))
2466
2467(defun cl-defsubst-expand (argns body simple whole unsafe &rest argvs)
2468 (if (and whole (not (cl-safe-expr-p (cons 'progn argvs)))) whole
2469 (if (cl-simple-exprs-p argvs) (setq simple t))
2470 (let ((lets (delq nil
2471 (mapcar* (function
2472 (lambda (argn argv)
2473 (if (or simple (cl-const-expr-p argv))
2474 (progn (setq body (subst argv argn body))
2475 (and unsafe (list argn argv)))
2476 (list argn argv))))
2477 argns argvs))))
2478 (if lets (list 'let lets body) body))))
2479
2480
2481;;; Compile-time optimizations for some functions defined in this package.
2482;;; Note that cl.el arranges to force cl-macs to be loaded at compile-time,
2483;;; mainly to make sure these macros will be present.
2484
2485(put 'eql 'byte-compile nil)
2486(define-compiler-macro eql (&whole form a b)
2487 (cond ((eq (cl-const-expr-p a) t)
2488 (let ((val (cl-const-expr-val a)))
2489 (if (and (numberp val) (not (integerp val)))
2490 (list 'equal a b)
2491 (list 'eq a b))))
2492 ((eq (cl-const-expr-p b) t)
2493 (let ((val (cl-const-expr-val b)))
2494 (if (and (numberp val) (not (integerp val)))
2495 (list 'equal a b)
2496 (list 'eq a b))))
2497 ((cl-simple-expr-p a 5)
2498 (list 'if (list 'numberp a)
2499 (list 'equal a b)
2500 (list 'eq a b)))
2501 ((and (cl-safe-expr-p a)
2502 (cl-simple-expr-p b 5))
2503 (list 'if (list 'numberp b)
2504 (list 'equal a b)
2505 (list 'eq a b)))
2506 (t form)))
2507
2508(define-compiler-macro member* (&whole form a list &rest keys)
2509 (let ((test (and (= (length keys) 2) (eq (car keys) ':test)
2510 (cl-const-expr-val (nth 1 keys)))))
2511 (cond ((eq test 'eq) (list 'memq a list))
2512 ((eq test 'equal) (list 'member a list))
2513 ((or (null keys) (eq test 'eql))
2514 (if (eq (cl-const-expr-p a) t)
2515 (list (if (floatp-safe (cl-const-expr-val a)) 'member 'memq)
2516 a list)
2517 (if (eq (cl-const-expr-p list) t)
2518 (let ((p (cl-const-expr-val list)) (mb nil) (mq nil))
2519 (if (not (cdr p))
2520 (and p (list 'eql a (list 'quote (car p))))
2521 (while p
2522 (if (floatp-safe (car p)) (setq mb t)
2523 (or (integerp (car p)) (symbolp (car p)) (setq mq t)))
2524 (setq p (cdr p)))
2525 (if (not mb) (list 'memq a list)
2526 (if (not mq) (list 'member a list) form))))
2527 form)))
2528 (t form))))
2529
2530(define-compiler-macro assoc* (&whole form a list &rest keys)
2531 (let ((test (and (= (length keys) 2) (eq (car keys) ':test)
2532 (cl-const-expr-val (nth 1 keys)))))
2533 (cond ((eq test 'eq) (list 'assq a list))
2534 ((eq test 'equal) (list 'assoc a list))
2535 ((and (eq (cl-const-expr-p a) t) (or (null keys) (eq test 'eql)))
2536 (if (floatp-safe (cl-const-expr-val a))
2537 (list 'assoc a list) (list 'assq a list)))
2538 (t form))))
2539
2540(define-compiler-macro adjoin (&whole form a list &rest keys)
2541 (if (and (cl-simple-expr-p a) (cl-simple-expr-p list)
2542 (not (memq ':key keys)))
2543 (list 'if (list* 'member* a list keys) list (list 'cons a list))
2544 form))
2545
2546(define-compiler-macro list* (arg &rest others)
2547 (let* ((args (reverse (cons arg others)))
2548 (form (car args)))
2549 (while (setq args (cdr args))
2550 (setq form (list 'cons (car args) form)))
2551 form))
2552
2553(define-compiler-macro get* (sym prop &optional def)
2554 (if def
2555 (list 'getf (list 'symbol-plist sym) prop def)
2556 (list 'get sym prop)))
2557
2558(define-compiler-macro typep (&whole form val type)
2559 (if (cl-const-expr-p type)
2560 (let ((res (cl-make-type-test val (cl-const-expr-val type))))
2561 (if (or (memq (cl-expr-contains res val) '(nil 1))
2562 (cl-simple-expr-p val)) res
2563 (let ((temp (gensym)))
2564 (list 'let (list (list temp val)) (subst temp val res)))))
2565 form))
2566
2567
2568(mapcar (function
2569 (lambda (y)
2570 (put (car y) 'side-effect-free t)
2571 (put (car y) 'byte-compile 'cl-byte-compile-compiler-macro)
2572 (put (car y) 'cl-compiler-macro
2573 (list 'lambda '(w x)
2574 (if (symbolp (cadr y))
2575 (list 'list (list 'quote (cadr y))
2576 (list 'list (list 'quote (caddr y)) 'x))
2577 (cons 'list (cdr y)))))))
2578 '((first 'car x) (second 'cadr x) (third 'caddr x) (fourth 'cadddr x)
2579 (fifth 'nth 4 x) (sixth 'nth 5 x) (seventh 'nth 6 x)
2580 (eighth 'nth 7 x) (ninth 'nth 8 x) (tenth 'nth 9 x)
2581 (rest 'cdr x) (endp 'null x) (plusp '> x 0) (minusp '< x 0)
2582 (caar car car) (cadr car cdr) (cdar cdr car) (cddr cdr cdr)
2583 (caaar car caar) (caadr car cadr) (cadar car cdar)
2584 (caddr car cddr) (cdaar cdr caar) (cdadr cdr cadr)
2585 (cddar cdr cdar) (cdddr cdr cddr) (caaaar car caaar)
2586 (caaadr car caadr) (caadar car cadar) (caaddr car caddr)
2587 (cadaar car cdaar) (cadadr car cdadr) (caddar car cddar)
2588 (cadddr car cdddr) (cdaaar cdr caaar) (cdaadr cdr caadr)
2589 (cdadar cdr cadar) (cdaddr cdr caddr) (cddaar cdr cdaar)
2590 (cddadr cdr cdadr) (cdddar cdr cddar) (cddddr cdr cdddr) ))
2591
2592;;; Things that are inline.
2593(proclaim '(inline floatp-safe acons map concatenate notany notevery
2594 cl-set-elt revappend nreconc gethash))
2595
2596;;; Things that are side-effect-free.
2597(mapcar (function (lambda (x) (put x 'side-effect-free t)))
2598 '(oddp evenp abs expt signum last butlast ldiff pairlis gcd lcm
2599 isqrt floor* ceiling* truncate* round* mod* rem* subseq
2600 list-length get* getf gethash hash-table-count))
2601
2602;;; Things that are side-effect-and-error-free.
2603(mapcar (function (lambda (x) (put x 'side-effect-free 'error-free)))
2604 '(eql floatp-safe list* subst acons equalp random-state-p
2605 copy-tree sublis hash-table-p))
2606
2607
2608(run-hooks 'cl-macs-load-hook)
2609
2610;;; cl-macs.el ends here
diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el
new file mode 100644
index 00000000000..b48d73e157f
--- /dev/null
+++ b/lisp/emacs-lisp/cl-seq.el
@@ -0,0 +1,920 @@
1;; cl-seq.el --- Common Lisp extensions for GNU Emacs Lisp (part three)
2
3;; Copyright (C) 1993 Free Software Foundation, Inc.
4
5;; Author: Dave Gillespie <daveg@synaptics.com>
6;; Version: 2.02
7;; Keywords: extensions
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 1, or (at your option)
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING. If not, write to
23;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25;; Commentary:
26
27;; These are extensions to Emacs Lisp that provide a degree of
28;; Common Lisp compatibility, beyond what is already built-in
29;; in Emacs Lisp.
30;;
31;; This package was written by Dave Gillespie; it is a complete
32;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
33;;
34;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
35;;
36;; Bug reports, comments, and suggestions are welcome!
37
38;; This file contains the Common Lisp sequence and list functions
39;; which take keyword arguments.
40
41;; See cl.el for Change Log.
42
43
44;; Code:
45
46(or (memq 'cl-19 features)
47 (error "Tried to load `cl-seq' before `cl'!"))
48
49
50;;; We define these here so that this file can compile without having
51;;; loaded the cl.el file already.
52
53(defmacro cl-push (x place) (list 'setq place (list 'cons x place)))
54(defmacro cl-pop (place)
55 (list 'car (list 'prog1 place (list 'setq place (list 'cdr place)))))
56
57
58;;; Keyword parsing. This is special-cased here so that we can compile
59;;; this file independent from cl-macs.
60
61(defmacro cl-parsing-keywords (kwords other-keys &rest body)
62 (cons
63 'let*
64 (cons (mapcar
65 (function
66 (lambda (x)
67 (let* ((var (if (consp x) (car x) x))
68 (mem (list 'car (list 'cdr (list 'memq (list 'quote var)
69 'cl-keys)))))
70 (if (eq var ':test-not)
71 (setq mem (list 'and mem (list 'setq 'cl-test mem) t)))
72 (if (eq var ':if-not)
73 (setq mem (list 'and mem (list 'setq 'cl-if mem) t)))
74 (list (intern
75 (format "cl-%s" (substring (symbol-name var) 1)))
76 (if (consp x) (list 'or mem (car (cdr x))) mem)))))
77 kwords)
78 (append
79 (and (not (eq other-keys t))
80 (list
81 (list 'let '((cl-keys-temp cl-keys))
82 (list 'while 'cl-keys-temp
83 (list 'or (list 'memq '(car cl-keys-temp)
84 (list 'quote
85 (mapcar
86 (function
87 (lambda (x)
88 (if (consp x)
89 (car x) x)))
90 (append kwords
91 other-keys))))
92 '(car (cdr (memq (quote :allow-other-keys)
93 cl-keys)))
94 '(error "Bad keyword argument %s"
95 (car cl-keys-temp)))
96 '(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
97 body))))
98(put 'cl-parsing-keywords 'lisp-indent-function 2)
99(put 'cl-parsing-keywords 'edebug-form-spec '(sexp sexp &rest form))
100
101(defmacro cl-check-key (x)
102 (list 'if 'cl-key (list 'funcall 'cl-key x) x))
103
104(defmacro cl-check-test-nokey (item x)
105 (list 'cond
106 (list 'cl-test
107 (list 'eq (list 'not (list 'funcall 'cl-test item x))
108 'cl-test-not))
109 (list 'cl-if
110 (list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not))
111 (list 't (list 'if (list 'numberp item)
112 (list 'equal item x) (list 'eq item x)))))
113
114(defmacro cl-check-test (item x)
115 (list 'cl-check-test-nokey item (list 'cl-check-key x)))
116
117(defmacro cl-check-match (x y)
118 (setq x (list 'cl-check-key x) y (list 'cl-check-key y))
119 (list 'if 'cl-test
120 (list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not)
121 (list 'if (list 'numberp x)
122 (list 'equal x y) (list 'eq x y))))
123
124(put 'cl-check-key 'edebug-form-spec 'edebug-forms)
125(put 'cl-check-test 'edebug-form-spec 'edebug-forms)
126(put 'cl-check-test-nokey 'edebug-form-spec 'edebug-forms)
127(put 'cl-check-match 'edebug-form-spec 'edebug-forms)
128
129(defvar cl-test) (defvar cl-test-not)
130(defvar cl-if) (defvar cl-if-not)
131(defvar cl-key)
132
133
134(defun reduce (cl-func cl-seq &rest cl-keys)
135 "Reduce two-argument FUNCTION across SEQUENCE.
136Keywords supported: :start :end :from-end :initial-value :key"
137 (cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
138 (or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
139 (setq cl-seq (subseq cl-seq cl-start cl-end))
140 (if cl-from-end (setq cl-seq (nreverse cl-seq)))
141 (let ((cl-accum (cond ((memq ':initial-value cl-keys) cl-initial-value)
142 (cl-seq (cl-check-key (cl-pop cl-seq)))
143 (t (funcall cl-func)))))
144 (if cl-from-end
145 (while cl-seq
146 (setq cl-accum (funcall cl-func (cl-check-key (cl-pop cl-seq))
147 cl-accum)))
148 (while cl-seq
149 (setq cl-accum (funcall cl-func cl-accum
150 (cl-check-key (cl-pop cl-seq))))))
151 cl-accum)))
152
153(defun fill (seq item &rest cl-keys)
154 "Fill the elements of SEQ with ITEM.
155Keywords supported: :start :end"
156 (cl-parsing-keywords ((:start 0) :end) ()
157 (if (listp seq)
158 (let ((p (nthcdr cl-start seq))
159 (n (if cl-end (- cl-end cl-start) 8000000)))
160 (while (and p (>= (setq n (1- n)) 0))
161 (setcar p item)
162 (setq p (cdr p))))
163 (or cl-end (setq cl-end (length seq)))
164 (if (and (= cl-start 0) (= cl-end (length seq)))
165 (fillarray seq item)
166 (while (< cl-start cl-end)
167 (aset seq cl-start item)
168 (setq cl-start (1+ cl-start)))))
169 seq))
170
171(defun replace (cl-seq1 cl-seq2 &rest cl-keys)
172 "Replace the elements of SEQ1 with the elements of SEQ2.
173SEQ1 is destructively modified, then returned.
174Keywords supported: :start1 :end1 :start2 :end2"
175 (cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
176 (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
177 (or (= cl-start1 cl-start2)
178 (let* ((cl-len (length cl-seq1))
179 (cl-n (min (- (or cl-end1 cl-len) cl-start1)
180 (- (or cl-end2 cl-len) cl-start2))))
181 (while (>= (setq cl-n (1- cl-n)) 0)
182 (cl-set-elt cl-seq1 (+ cl-start1 cl-n)
183 (elt cl-seq2 (+ cl-start2 cl-n))))))
184 (if (listp cl-seq1)
185 (let ((cl-p1 (nthcdr cl-start1 cl-seq1))
186 (cl-n1 (if cl-end1 (- cl-end1 cl-start1) 4000000)))
187 (if (listp cl-seq2)
188 (let ((cl-p2 (nthcdr cl-start2 cl-seq2))
189 (cl-n (min cl-n1
190 (if cl-end2 (- cl-end2 cl-start2) 4000000))))
191 (while (and cl-p1 cl-p2 (>= (setq cl-n (1- cl-n)) 0))
192 (setcar cl-p1 (car cl-p2))
193 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))))
194 (setq cl-end2 (min (or cl-end2 (length cl-seq2))
195 (+ cl-start2 cl-n1)))
196 (while (and cl-p1 (< cl-start2 cl-end2))
197 (setcar cl-p1 (aref cl-seq2 cl-start2))
198 (setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2)))))
199 (setq cl-end1 (min (or cl-end1 (length cl-seq1))
200 (+ cl-start1 (- (or cl-end2 (length cl-seq2))
201 cl-start2))))
202 (if (listp cl-seq2)
203 (let ((cl-p2 (nthcdr cl-start2 cl-seq2)))
204 (while (< cl-start1 cl-end1)
205 (aset cl-seq1 cl-start1 (car cl-p2))
206 (setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1))))
207 (while (< cl-start1 cl-end1)
208 (aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2))
209 (setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
210 cl-seq1))
211
212(defun remove* (cl-item cl-seq &rest cl-keys)
213 "Remove all occurrences of ITEM in SEQ.
214This is a non-destructive function; it makes a copy of SEQ if necessary
215to avoid corrupting the original SEQ.
216Keywords supported: :test :test-not :key :count :start :end :from-end"
217 (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
218 (:start 0) :end) ()
219 (if (<= (or cl-count (setq cl-count 8000000)) 0)
220 cl-seq
221 (if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000)))
222 (let ((cl-i (cl-position cl-item cl-seq cl-start cl-end
223 cl-from-end)))
224 (if cl-i
225 (let ((cl-res (apply 'delete* cl-item (append cl-seq nil)
226 (append (if cl-from-end
227 (list ':end (1+ cl-i))
228 (list ':start cl-i))
229 cl-keys))))
230 (if (listp cl-seq) cl-res
231 (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))
232 cl-seq))
233 (setq cl-end (- (or cl-end 8000000) cl-start))
234 (if (= cl-start 0)
235 (while (and cl-seq (> cl-end 0)
236 (cl-check-test cl-item (car cl-seq))
237 (setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
238 (> (setq cl-count (1- cl-count)) 0))))
239 (if (and (> cl-count 0) (> cl-end 0))
240 (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
241 (setq cl-end (1- cl-end)) (cdr cl-seq))))
242 (while (and cl-p (> cl-end 0)
243 (not (cl-check-test cl-item (car cl-p))))
244 (setq cl-p (cdr cl-p) cl-end (1- cl-end)))
245 (if (and cl-p (> cl-end 0))
246 (nconc (ldiff cl-seq cl-p)
247 (if (= cl-count 1) (cdr cl-p)
248 (and (cdr cl-p)
249 (apply 'delete* cl-item
250 (copy-sequence (cdr cl-p))
251 ':start 0 ':end (1- cl-end)
252 ':count (1- cl-count) cl-keys))))
253 cl-seq))
254 cl-seq)))))
255
256(defun remove-if (cl-pred cl-list &rest cl-keys)
257 "Remove all items satisfying PREDICATE in SEQ.
258This is a non-destructive function; it makes a copy of SEQ if necessary
259to avoid corrupting the original SEQ.
260Keywords supported: :key :count :start :end :from-end"
261 (apply 'remove* nil cl-list ':if cl-pred cl-keys))
262
263(defun remove-if-not (cl-pred cl-list &rest cl-keys)
264 "Remove all items not satisfying PREDICATE in SEQ.
265This is a non-destructive function; it makes a copy of SEQ if necessary
266to avoid corrupting the original SEQ.
267Keywords supported: :key :count :start :end :from-end"
268 (apply 'remove* nil cl-list ':if-not cl-pred cl-keys))
269
270(defun delete* (cl-item cl-seq &rest cl-keys)
271 "Remove all occurrences of ITEM in SEQ.
272This is a destructive function; it reuses the storage of SEQ whenever possible.
273Keywords supported: :test :test-not :key :count :start :end :from-end"
274 (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
275 (:start 0) :end) ()
276 (if (<= (or cl-count (setq cl-count 8000000)) 0)
277 cl-seq
278 (if (listp cl-seq)
279 (if (and cl-from-end (< cl-count 4000000))
280 (let (cl-i)
281 (while (and (>= (setq cl-count (1- cl-count)) 0)
282 (setq cl-i (cl-position cl-item cl-seq cl-start
283 cl-end cl-from-end)))
284 (if (= cl-i 0) (setq cl-seq (cdr cl-seq))
285 (let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
286 (setcdr cl-tail (cdr (cdr cl-tail)))))
287 (setq cl-end cl-i))
288 cl-seq)
289 (setq cl-end (- (or cl-end 8000000) cl-start))
290 (if (= cl-start 0)
291 (progn
292 (while (and cl-seq
293 (> cl-end 0)
294 (cl-check-test cl-item (car cl-seq))
295 (setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
296 (> (setq cl-count (1- cl-count)) 0)))
297 (setq cl-end (1- cl-end)))
298 (setq cl-start (1- cl-start)))
299 (if (and (> cl-count 0) (> cl-end 0))
300 (let ((cl-p (nthcdr cl-start cl-seq)))
301 (while (and (cdr cl-p) (> cl-end 0))
302 (if (cl-check-test cl-item (car (cdr cl-p)))
303 (progn
304 (setcdr cl-p (cdr (cdr cl-p)))
305 (if (= (setq cl-count (1- cl-count)) 0)
306 (setq cl-end 1)))
307 (setq cl-p (cdr cl-p)))
308 (setq cl-end (1- cl-end)))))
309 cl-seq)
310 (apply 'remove* cl-item cl-seq cl-keys)))))
311
312(defun delete-if (cl-pred cl-list &rest cl-keys)
313 "Remove all items satisfying PREDICATE in SEQ.
314This is a destructive function; it reuses the storage of SEQ whenever possible.
315Keywords supported: :key :count :start :end :from-end"
316 (apply 'delete* nil cl-list ':if cl-pred cl-keys))
317
318(defun delete-if-not (cl-pred cl-list &rest cl-keys)
319 "Remove all items not satisfying PREDICATE in SEQ.
320This is a destructive function; it reuses the storage of SEQ whenever possible.
321Keywords supported: :key :count :start :end :from-end"
322 (apply 'delete* nil cl-list ':if-not cl-pred cl-keys))
323
324(or (and (fboundp 'delete) (subrp (symbol-function 'delete)))
325 (defalias 'delete (function (lambda (x y) (delete* x y ':test 'equal)))))
326(defun remove (x y) (remove* x y ':test 'equal))
327(defun remq (x y) (if (memq x y) (delq x (copy-list y)) y))
328
329(defun remove-duplicates (cl-seq &rest cl-keys)
330 "Return a copy of SEQ with all duplicate elements removed.
331Keywords supported: :test :test-not :key :start :end :from-end"
332 (cl-delete-duplicates cl-seq cl-keys t))
333
334(defun delete-duplicates (cl-seq &rest cl-keys)
335 "Remove all duplicate elements from SEQ (destructively).
336Keywords supported: :test :test-not :key :start :end :from-end"
337 (cl-delete-duplicates cl-seq cl-keys nil))
338
339(defun cl-delete-duplicates (cl-seq cl-keys cl-copy)
340 (if (listp cl-seq)
341 (cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if)
342 ()
343 (if cl-from-end
344 (let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
345 (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
346 (while (> cl-end 1)
347 (setq cl-i 0)
348 (while (setq cl-i (cl-position (cl-check-key (car cl-p))
349 (cdr cl-p) cl-i (1- cl-end)))
350 (if cl-copy (setq cl-seq (copy-sequence cl-seq)
351 cl-p (nthcdr cl-start cl-seq) cl-copy nil))
352 (let ((cl-tail (nthcdr cl-i cl-p)))
353 (setcdr cl-tail (cdr (cdr cl-tail))))
354 (setq cl-end (1- cl-end)))
355 (setq cl-p (cdr cl-p) cl-end (1- cl-end)
356 cl-start (1+ cl-start)))
357 cl-seq)
358 (setq cl-end (- (or cl-end (length cl-seq)) cl-start))
359 (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
360 (cl-position (cl-check-key (car cl-seq))
361 (cdr cl-seq) 0 (1- cl-end)))
362 (setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
363 (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
364 (setq cl-end (1- cl-end) cl-start 1) cl-seq)))
365 (while (and (cdr (cdr cl-p)) (> cl-end 1))
366 (if (cl-position (cl-check-key (car (cdr cl-p)))
367 (cdr (cdr cl-p)) 0 (1- cl-end))
368 (progn
369 (if cl-copy (setq cl-seq (copy-sequence cl-seq)
370 cl-p (nthcdr (1- cl-start) cl-seq)
371 cl-copy nil))
372 (setcdr cl-p (cdr (cdr cl-p))))
373 (setq cl-p (cdr cl-p)))
374 (setq cl-end (1- cl-end) cl-start (1+ cl-start)))
375 cl-seq)))
376 (let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil)))
377 (if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
378
379(defun substitute (cl-new cl-old cl-seq &rest cl-keys)
380 "Substitute NEW for OLD in SEQ.
381This is a non-destructive function; it makes a copy of SEQ if necessary
382to avoid corrupting the original SEQ.
383Keywords supported: :test :test-not :key :count :start :end :from-end"
384 (cl-parsing-keywords (:test :test-not :key :if :if-not :count
385 (:start 0) :end :from-end) ()
386 (if (or (eq cl-old cl-new)
387 (<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0))
388 cl-seq
389 (let ((cl-i (cl-position cl-old cl-seq cl-start cl-end)))
390 (if (not cl-i)
391 cl-seq
392 (setq cl-seq (copy-sequence cl-seq))
393 (or cl-from-end
394 (progn (cl-set-elt cl-seq cl-i cl-new)
395 (setq cl-i (1+ cl-i) cl-count (1- cl-count))))
396 (apply 'nsubstitute cl-new cl-old cl-seq ':count cl-count
397 ':start cl-i cl-keys))))))
398
399(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys)
400 "Substitute NEW for all items satisfying PREDICATE in SEQ.
401This is a non-destructive function; it makes a copy of SEQ if necessary
402to avoid corrupting the original SEQ.
403Keywords supported: :key :count :start :end :from-end"
404 (apply 'substitute cl-new nil cl-list ':if cl-pred cl-keys))
405
406(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
407 "Substitute NEW for all items not satisfying PREDICATE in SEQ.
408This is a non-destructive function; it makes a copy of SEQ if necessary
409to avoid corrupting the original SEQ.
410Keywords supported: :key :count :start :end :from-end"
411 (apply 'substitute cl-new nil cl-list ':if-not cl-pred cl-keys))
412
413(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
414 "Substitute NEW for OLD in SEQ.
415This is a destructive function; it reuses the storage of SEQ whenever possible.
416Keywords supported: :test :test-not :key :count :start :end :from-end"
417 (cl-parsing-keywords (:test :test-not :key :if :if-not :count
418 (:start 0) :end :from-end) ()
419 (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0)
420 (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000)))
421 (let ((cl-p (nthcdr cl-start cl-seq)))
422 (setq cl-end (- (or cl-end 8000000) cl-start))
423 (while (and cl-p (> cl-end 0) (> cl-count 0))
424 (if (cl-check-test cl-old (car cl-p))
425 (progn
426 (setcar cl-p cl-new)
427 (setq cl-count (1- cl-count))))
428 (setq cl-p (cdr cl-p) cl-end (1- cl-end))))
429 (or cl-end (setq cl-end (length cl-seq)))
430 (if cl-from-end
431 (while (and (< cl-start cl-end) (> cl-count 0))
432 (setq cl-end (1- cl-end))
433 (if (cl-check-test cl-old (elt cl-seq cl-end))
434 (progn
435 (cl-set-elt cl-seq cl-end cl-new)
436 (setq cl-count (1- cl-count)))))
437 (while (and (< cl-start cl-end) (> cl-count 0))
438 (if (cl-check-test cl-old (aref cl-seq cl-start))
439 (progn
440 (aset cl-seq cl-start cl-new)
441 (setq cl-count (1- cl-count))))
442 (setq cl-start (1+ cl-start))))))
443 cl-seq))
444
445(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
446 "Substitute NEW for all items satisfying PREDICATE in SEQ.
447This is a destructive function; it reuses the storage of SEQ whenever possible.
448Keywords supported: :key :count :start :end :from-end"
449 (apply 'nsubstitute cl-new nil cl-list ':if cl-pred cl-keys))
450
451(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
452 "Substitute NEW for all items not satisfying PREDICATE in SEQ.
453This is a destructive function; it reuses the storage of SEQ whenever possible.
454Keywords supported: :key :count :start :end :from-end"
455 (apply 'nsubstitute cl-new nil cl-list ':if-not cl-pred cl-keys))
456
457(defun find (cl-item cl-seq &rest cl-keys)
458 "Find the first occurrence of ITEM in LIST.
459Return the matching ITEM, or nil if not found.
460Keywords supported: :test :test-not :key :start :end :from-end"
461 (let ((cl-pos (apply 'position cl-item cl-seq cl-keys)))
462 (and cl-pos (elt cl-seq cl-pos))))
463
464(defun find-if (cl-pred cl-list &rest cl-keys)
465 "Find the first item satisfying PREDICATE in LIST.
466Return the matching ITEM, or nil if not found.
467Keywords supported: :key :start :end :from-end"
468 (apply 'find nil cl-list ':if cl-pred cl-keys))
469
470(defun find-if-not (cl-pred cl-list &rest cl-keys)
471 "Find the first item not satisfying PREDICATE in LIST.
472Return the matching ITEM, or nil if not found.
473Keywords supported: :key :start :end :from-end"
474 (apply 'find nil cl-list ':if-not cl-pred cl-keys))
475
476(defun position (cl-item cl-seq &rest cl-keys)
477 "Find the first occurrence of ITEM in LIST.
478Return the index of the matching item, or nil if not found.
479Keywords supported: :test :test-not :key :start :end :from-end"
480 (cl-parsing-keywords (:test :test-not :key :if :if-not
481 (:start 0) :end :from-end) ()
482 (cl-position cl-item cl-seq cl-start cl-end cl-from-end)))
483
484(defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
485 (if (listp cl-seq)
486 (let ((cl-p (nthcdr cl-start cl-seq)))
487 (or cl-end (setq cl-end 8000000))
488 (let ((cl-res nil))
489 (while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end))
490 (if (cl-check-test cl-item (car cl-p))
491 (setq cl-res cl-start))
492 (setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
493 cl-res))
494 (or cl-end (setq cl-end (length cl-seq)))
495 (if cl-from-end
496 (progn
497 (while (and (>= (setq cl-end (1- cl-end)) cl-start)
498 (not (cl-check-test cl-item (aref cl-seq cl-end)))))
499 (and (>= cl-end cl-start) cl-end))
500 (while (and (< cl-start cl-end)
501 (not (cl-check-test cl-item (aref cl-seq cl-start))))
502 (setq cl-start (1+ cl-start)))
503 (and (< cl-start cl-end) cl-start))))
504
505(defun position-if (cl-pred cl-list &rest cl-keys)
506 "Find the first item satisfying PREDICATE in LIST.
507Return the index of the matching item, or nil if not found.
508Keywords supported: :key :start :end :from-end"
509 (apply 'position nil cl-list ':if cl-pred cl-keys))
510
511(defun position-if-not (cl-pred cl-list &rest cl-keys)
512 "Find the first item not satisfying PREDICATE in LIST.
513Return the index of the matching item, or nil if not found.
514Keywords supported: :key :start :end :from-end"
515 (apply 'position nil cl-list ':if-not cl-pred cl-keys))
516
517(defun count (cl-item cl-seq &rest cl-keys)
518 "Count the number of occurrences of ITEM in LIST.
519Keywords supported: :test :test-not :key :start :end"
520 (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
521 (let ((cl-count 0) cl-x)
522 (or cl-end (setq cl-end (length cl-seq)))
523 (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
524 (while (< cl-start cl-end)
525 (setq cl-x (if (consp cl-seq) (cl-pop cl-seq) (aref cl-seq cl-start)))
526 (if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
527 (setq cl-start (1+ cl-start)))
528 cl-count)))
529
530(defun count-if (cl-pred cl-list &rest cl-keys)
531 "Count the number of items satisfying PREDICATE in LIST.
532Keywords supported: :key :start :end"
533 (apply 'count nil cl-list ':if cl-pred cl-keys))
534
535(defun count-if-not (cl-pred cl-list &rest cl-keys)
536 "Count the number of items not satisfying PREDICATE in LIST.
537Keywords supported: :key :start :end"
538 (apply 'count nil cl-list ':if-not cl-pred cl-keys))
539
540(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys)
541 "Compare SEQ1 with SEQ2, return index of first mismatching element.
542Return nil if the sequences match. If one sequence is a prefix of the
543other, the return value indicates the end of the shorted sequence.
544Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end"
545 (cl-parsing-keywords (:test :test-not :key :from-end
546 (:start1 0) :end1 (:start2 0) :end2) ()
547 (or cl-end1 (setq cl-end1 (length cl-seq1)))
548 (or cl-end2 (setq cl-end2 (length cl-seq2)))
549 (if cl-from-end
550 (progn
551 (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
552 (cl-check-match (elt cl-seq1 (1- cl-end1))
553 (elt cl-seq2 (1- cl-end2))))
554 (setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
555 (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
556 (1- cl-end1)))
557 (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
558 (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
559 (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
560 (cl-check-match (if cl-p1 (car cl-p1)
561 (aref cl-seq1 cl-start1))
562 (if cl-p2 (car cl-p2)
563 (aref cl-seq2 cl-start2))))
564 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)
565 cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2)))
566 (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
567 cl-start1)))))
568
569(defun search (cl-seq1 cl-seq2 &rest cl-keys)
570 "Search for SEQ1 as a subsequence of SEQ2.
571Return the index of the leftmost element of the first match found;
572return nil if there are no matches.
573Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end"
574 (cl-parsing-keywords (:test :test-not :key :from-end
575 (:start1 0) :end1 (:start2 0) :end2) ()
576 (or cl-end1 (setq cl-end1 (length cl-seq1)))
577 (or cl-end2 (setq cl-end2 (length cl-seq2)))
578 (if (>= cl-start1 cl-end1)
579 (if cl-from-end cl-end2 cl-start2)
580 (let* ((cl-len (- cl-end1 cl-start1))
581 (cl-first (cl-check-key (elt cl-seq1 cl-start1)))
582 (cl-if nil) cl-pos)
583 (setq cl-end2 (- cl-end2 (1- cl-len)))
584 (while (and (< cl-start2 cl-end2)
585 (setq cl-pos (cl-position cl-first cl-seq2
586 cl-start2 cl-end2 cl-from-end))
587 (apply 'mismatch cl-seq1 cl-seq2
588 ':start1 (1+ cl-start1) ':end1 cl-end1
589 ':start2 (1+ cl-pos) ':end2 (+ cl-pos cl-len)
590 ':from-end nil cl-keys))
591 (if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
592 (and (< cl-start2 cl-end2) cl-pos)))))
593
594(defun sort* (cl-seq cl-pred &rest cl-keys)
595 "Sort the argument SEQUENCE according to PREDICATE.
596This is a destructive function; it reuses the storage of SEQUENCE if possible.
597Keywords supported: :key"
598 (if (nlistp cl-seq)
599 (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys))
600 (cl-parsing-keywords (:key) ()
601 (if (memq cl-key '(nil identity))
602 (sort cl-seq cl-pred)
603 (sort cl-seq (function (lambda (cl-x cl-y)
604 (funcall cl-pred (funcall cl-key cl-x)
605 (funcall cl-key cl-y)))))))))
606
607(defun stable-sort (cl-seq cl-pred &rest cl-keys)
608 "Sort the argument SEQUENCE stably according to PREDICATE.
609This is a destructive function; it reuses the storage of SEQUENCE if possible.
610Keywords supported: :key"
611 (apply 'sort* cl-seq cl-pred cl-keys))
612
613(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
614 "Destructively merge the two sequences to produce a new sequence.
615TYPE is the sequence type to return, SEQ1 and SEQ2 are the two
616argument sequences, and PRED is a `less-than' predicate on the elements.
617Keywords supported: :key"
618 (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
619 (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
620 (cl-parsing-keywords (:key) ()
621 (let ((cl-res nil))
622 (while (and cl-seq1 cl-seq2)
623 (if (funcall cl-pred (cl-check-key (car cl-seq2))
624 (cl-check-key (car cl-seq1)))
625 (cl-push (cl-pop cl-seq2) cl-res)
626 (cl-push (cl-pop cl-seq1) cl-res)))
627 (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
628
629;;; See compiler macro in cl-macs.el
630(defun member* (cl-item cl-list &rest cl-keys)
631 "Find the first occurrence of ITEM in LIST.
632Return the sublist of LIST whose car is ITEM.
633Keywords supported: :test :test-not :key"
634 (if cl-keys
635 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
636 (while (and cl-list (not (cl-check-test cl-item (car cl-list))))
637 (setq cl-list (cdr cl-list)))
638 cl-list)
639 (if (and (numberp cl-item) (not (integerp cl-item)))
640 (member cl-item cl-list)
641 (memq cl-item cl-list))))
642
643(defun member-if (cl-pred cl-list &rest cl-keys)
644 "Find the first item satisfying PREDICATE in LIST.
645Return the sublist of LIST whose car matches.
646Keywords supported: :key"
647 (apply 'member* nil cl-list ':if cl-pred cl-keys))
648
649(defun member-if-not (cl-pred cl-list &rest cl-keys)
650 "Find the first item not satisfying PREDICATE in LIST.
651Return the sublist of LIST whose car matches.
652Keywords supported: :key"
653 (apply 'member* nil cl-list ':if-not cl-pred cl-keys))
654
655(defun cl-adjoin (cl-item cl-list &rest cl-keys)
656 (if (cl-parsing-keywords (:key) t
657 (apply 'member* (cl-check-key cl-item) cl-list cl-keys))
658 cl-list
659 (cons cl-item cl-list)))
660
661;;; See compiler macro in cl-macs.el
662(defun assoc* (cl-item cl-alist &rest cl-keys)
663 "Find the first item whose car matches ITEM in LIST.
664Keywords supported: :test :test-not :key"
665 (if cl-keys
666 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
667 (while (and cl-alist
668 (or (not (consp (car cl-alist)))
669 (not (cl-check-test cl-item (car (car cl-alist))))))
670 (setq cl-alist (cdr cl-alist)))
671 (and cl-alist (car cl-alist)))
672 (if (and (numberp cl-item) (not (integerp cl-item)))
673 (assoc cl-item cl-alist)
674 (assq cl-item cl-alist))))
675
676(defun assoc-if (cl-pred cl-list &rest cl-keys)
677 "Find the first item whose car satisfies PREDICATE in LIST.
678Keywords supported: :key"
679 (apply 'assoc* nil cl-list ':if cl-pred cl-keys))
680
681(defun assoc-if-not (cl-pred cl-list &rest cl-keys)
682 "Find the first item whose car does not satisfy PREDICATE in LIST.
683Keywords supported: :key"
684 (apply 'assoc* nil cl-list ':if-not cl-pred cl-keys))
685
686(defun rassoc* (cl-item cl-alist &rest cl-keys)
687 "Find the first item whose cdr matches ITEM in LIST.
688Keywords supported: :test :test-not :key"
689 (if (or cl-keys (numberp cl-item))
690 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
691 (while (and cl-alist
692 (or (not (consp (car cl-alist)))
693 (not (cl-check-test cl-item (cdr (car cl-alist))))))
694 (setq cl-alist (cdr cl-alist)))
695 (and cl-alist (car cl-alist)))
696 (rassq cl-item cl-alist)))
697
698(defun rassoc (item alist) (rassoc* item alist ':test 'equal))
699
700(defun rassoc-if (cl-pred cl-list &rest cl-keys)
701 "Find the first item whose cdr satisfies PREDICATE in LIST.
702Keywords supported: :key"
703 (apply 'rassoc* nil cl-list ':if cl-pred cl-keys))
704
705(defun rassoc-if-not (cl-pred cl-list &rest cl-keys)
706 "Find the first item whose cdr does not satisfy PREDICATE in LIST.
707Keywords supported: :key"
708 (apply 'rassoc* nil cl-list ':if-not cl-pred cl-keys))
709
710(defun union (cl-list1 cl-list2 &rest cl-keys)
711 "Combine LIST1 and LIST2 using a set-union operation.
712The result list contains all items that appear in either LIST1 or LIST2.
713This is a non-destructive function; it makes a copy of the data if necessary
714to avoid corrupting the original LIST1 and LIST2.
715Keywords supported: :test :test-not :key"
716 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
717 ((equal cl-list1 cl-list2) cl-list1)
718 (t
719 (or (>= (length cl-list1) (length cl-list2))
720 (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
721 (while cl-list2
722 (if (or cl-keys (numberp (car cl-list2)))
723 (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys))
724 (or (memq (car cl-list2) cl-list1)
725 (cl-push (car cl-list2) cl-list1)))
726 (cl-pop cl-list2))
727 cl-list1)))
728
729(defun nunion (cl-list1 cl-list2 &rest cl-keys)
730 "Combine LIST1 and LIST2 using a set-union operation.
731The result list contains all items that appear in either LIST1 or LIST2.
732This is a destructive function; it reuses the storage of LIST1 and LIST2
733whenever possible.
734Keywords supported: :test :test-not :key"
735 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
736 (t (apply 'union cl-list1 cl-list2 cl-keys))))
737
738(defun intersection (cl-list1 cl-list2 &rest cl-keys)
739 "Combine LIST1 and LIST2 using a set-intersection operation.
740The result list contains all items that appear in both LIST1 and LIST2.
741This is a non-destructive function; it makes a copy of the data if necessary
742to avoid corrupting the original LIST1 and LIST2.
743Keywords supported: :test :test-not :key"
744 (and cl-list1 cl-list2
745 (if (equal cl-list1 cl-list2) cl-list1
746 (cl-parsing-keywords (:key) (:test :test-not)
747 (let ((cl-res nil))
748 (or (>= (length cl-list1) (length cl-list2))
749 (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
750 (while cl-list2
751 (if (if (or cl-keys (numberp (car cl-list2)))
752 (apply 'member* (cl-check-key (car cl-list2))
753 cl-list1 cl-keys)
754 (memq (car cl-list2) cl-list1))
755 (cl-push (car cl-list2) cl-res))
756 (cl-pop cl-list2))
757 cl-res)))))
758
759(defun nintersection (cl-list1 cl-list2 &rest cl-keys)
760 "Combine LIST1 and LIST2 using a set-intersection operation.
761The result list contains all items that appear in both LIST1 and LIST2.
762This is a destructive function; it reuses the storage of LIST1 and LIST2
763whenever possible.
764Keywords supported: :test :test-not :key"
765 (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys)))
766
767(defun set-difference (cl-list1 cl-list2 &rest cl-keys)
768 "Combine LIST1 and LIST2 using a set-difference operation.
769The result list contains all items that appear in LIST1 but not LIST2.
770This is a non-destructive function; it makes a copy of the data if necessary
771to avoid corrupting the original LIST1 and LIST2.
772Keywords supported: :test :test-not :key"
773 (if (or (null cl-list1) (null cl-list2)) cl-list1
774 (cl-parsing-keywords (:key) (:test :test-not)
775 (let ((cl-res nil))
776 (while cl-list1
777 (or (if (or cl-keys (numberp (car cl-list1)))
778 (apply 'member* (cl-check-key (car cl-list1))
779 cl-list2 cl-keys)
780 (memq (car cl-list1) cl-list2))
781 (cl-push (car cl-list1) cl-res))
782 (cl-pop cl-list1))
783 cl-res))))
784
785(defun nset-difference (cl-list1 cl-list2 &rest cl-keys)
786 "Combine LIST1 and LIST2 using a set-difference operation.
787The result list contains all items that appear in LIST1 but not LIST2.
788This is a destructive function; it reuses the storage of LIST1 and LIST2
789whenever possible.
790Keywords supported: :test :test-not :key"
791 (if (or (null cl-list1) (null cl-list2)) cl-list1
792 (apply 'set-difference cl-list1 cl-list2 cl-keys)))
793
794(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
795 "Combine LIST1 and LIST2 using a set-exclusive-or operation.
796The result list contains all items that appear in exactly one of LIST1, LIST2.
797This is a non-destructive function; it makes a copy of the data if necessary
798to avoid corrupting the original LIST1 and LIST2.
799Keywords supported: :test :test-not :key"
800 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
801 ((equal cl-list1 cl-list2) nil)
802 (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys)
803 (apply 'set-difference cl-list2 cl-list1 cl-keys)))))
804
805(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
806 "Combine LIST1 and LIST2 using a set-exclusive-or operation.
807The result list contains all items that appear in exactly one of LIST1, LIST2.
808This is a destructive function; it reuses the storage of LIST1 and LIST2
809whenever possible.
810Keywords supported: :test :test-not :key"
811 (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
812 ((equal cl-list1 cl-list2) nil)
813 (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys)
814 (apply 'nset-difference cl-list2 cl-list1 cl-keys)))))
815
816(defun subsetp (cl-list1 cl-list2 &rest cl-keys)
817 "True if LIST1 is a subset of LIST2.
818I.e., if every element of LIST1 also appears in LIST2.
819Keywords supported: :test :test-not :key"
820 (cond ((null cl-list1) t) ((null cl-list2) nil)
821 ((equal cl-list1 cl-list2) t)
822 (t (cl-parsing-keywords (:key) (:test :test-not)
823 (while (and cl-list1
824 (apply 'member* (cl-check-key (car cl-list1))
825 cl-list2 cl-keys))
826 (cl-pop cl-list1))
827 (null cl-list1)))))
828
829(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys)
830 "Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
831Return a copy of TREE with all matching elements replaced by NEW.
832Keywords supported: :key"
833 (apply 'sublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys))
834
835(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
836 "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
837Return a copy of TREE with all non-matching elements replaced by NEW.
838Keywords supported: :key"
839 (apply 'sublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys))
840
841(defun nsubst (cl-new cl-old cl-tree &rest cl-keys)
842 "Substitute NEW for OLD everywhere in TREE (destructively).
843Any element of TREE which is `eql' to OLD is changed to NEW (via a call
844to `setcar').
845Keywords supported: :test :test-not :key"
846 (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
847
848(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
849 "Substitute NEW for elements matching PREDICATE in TREE (destructively).
850Any element of TREE which matches is changed to NEW (via a call to `setcar').
851Keywords supported: :key"
852 (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys))
853
854(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
855 "Substitute NEW for elements not matching PREDICATE in TREE (destructively).
856Any element of TREE which matches is changed to NEW (via a call to `setcar').
857Keywords supported: :key"
858 (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys))
859
860(defun sublis (cl-alist cl-tree &rest cl-keys)
861 "Perform substitutions indicated by ALIST in TREE (non-destructively).
862Return a copy of TREE with all matching elements replaced.
863Keywords supported: :test :test-not :key"
864 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
865 (cl-sublis-rec cl-tree)))
866
867(defvar cl-alist)
868(defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if*
869 (let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist))
870 (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
871 (setq cl-p (cdr cl-p)))
872 (if cl-p (cdr (car cl-p))
873 (if (consp cl-tree)
874 (let ((cl-a (cl-sublis-rec (car cl-tree)))
875 (cl-d (cl-sublis-rec (cdr cl-tree))))
876 (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
877 cl-tree
878 (cons cl-a cl-d)))
879 cl-tree))))
880
881(defun nsublis (cl-alist cl-tree &rest cl-keys)
882 "Perform substitutions indicated by ALIST in TREE (destructively).
883Any matching element of TREE is changed via a call to `setcar'.
884Keywords supported: :test :test-not :key"
885 (cl-parsing-keywords (:test :test-not :key :if :if-not) ()
886 (let ((cl-hold (list cl-tree)))
887 (cl-nsublis-rec cl-hold)
888 (car cl-hold))))
889
890(defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if*
891 (while (consp cl-tree)
892 (let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist))
893 (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
894 (setq cl-p (cdr cl-p)))
895 (if cl-p (setcar cl-tree (cdr (car cl-p)))
896 (if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree))))
897 (setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist)
898 (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
899 (setq cl-p (cdr cl-p)))
900 (if cl-p
901 (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
902 (setq cl-tree (cdr cl-tree))))))
903
904(defun tree-equal (cl-x cl-y &rest cl-keys)
905 "T if trees X and Y have `eql' leaves.
906Atoms are compared by `eql'; cons cells are compared recursively.
907Keywords supported: :test :test-not :key"
908 (cl-parsing-keywords (:test :test-not :key) ()
909 (cl-tree-equal-rec cl-x cl-y)))
910
911(defun cl-tree-equal-rec (cl-x cl-y)
912 (while (and (consp cl-x) (consp cl-y)
913 (cl-tree-equal-rec (car cl-x) (car cl-y)))
914 (setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
915 (and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y)))
916
917
918(run-hooks 'cl-seq-load-hook)
919
920;;; cl-seq.el ends here
diff --git a/lisp/emacs-lisp/cl.el b/lisp/emacs-lisp/cl.el
new file mode 100644
index 00000000000..41f0baaa6fd
--- /dev/null
+++ b/lisp/emacs-lisp/cl.el
@@ -0,0 +1,757 @@
1;; cl.el --- Common Lisp extensions for GNU Emacs Lisp
2
3;; Copyright (C) 1993 Free Software Foundation, Inc.
4
5;; Author: Dave Gillespie <daveg@synaptics.com>
6;; Version: 2.02
7;; Keywords: extensions
8
9;; This file is part of GNU Emacs.
10
11;; GNU Emacs is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 1, or (at your option)
14;; any later version.
15
16;; GNU Emacs is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GNU Emacs; see the file COPYING. If not, write to
23;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24
25;; Commentary:
26
27;; These are extensions to Emacs Lisp that provide a degree of
28;; Common Lisp compatibility, beyond what is already built-in
29;; in Emacs Lisp.
30;;
31;; This package was written by Dave Gillespie; it is a complete
32;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
33;;
34;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
35;;
36;; Bug reports, comments, and suggestions are welcome!
37
38;; This file contains the portions of the Common Lisp extensions
39;; package which should always be present.
40
41
42;; Future notes:
43
44;; Once Emacs 19 becomes standard, many things in this package which are
45;; messy for reasons of compatibility can be greatly simplified. For now,
46;; I prefer to maintain one unified version.
47
48
49;; Change Log:
50
51;; Version 2.02 (30 Jul 93):
52;; * Added "cl-compat.el" file, extra compatibility with old package.
53;; * Added `lexical-let' and `lexical-let*'.
54;; * Added `define-modify-macro', `callf', and `callf2'.
55;; * Added `ignore-errors'.
56;; * Changed `(setf (nthcdr N PLACE) X)' to work when N is zero.
57;; * Merged `*gentemp-counter*' into `*gensym-counter*'.
58;; * Extended `subseq' to allow negative START and END like `substring'.
59;; * Added `in-ref', `across-ref', `elements of-ref' loop clauses.
60;; * Added `concat', `vconcat' loop clauses.
61;; * Cleaned up a number of compiler warnings.
62
63;; Version 2.01 (7 Jul 93):
64;; * Added support for FSF version of Emacs 19.
65;; * Added `add-hook' for Emacs 18 users.
66;; * Added `defsubst*' and `symbol-macrolet'.
67;; * Added `maplist', `mapc', `mapl', `mapcan', `mapcon'.
68;; * Added `map', `concatenate', `reduce', `merge'.
69;; * Added `revappend', `nreconc', `tailp', `tree-equal'.
70;; * Added `assert', `check-type', `typecase', `typep', and `deftype'.
71;; * Added destructuring and `&environment' support to `defmacro*'.
72;; * Added destructuring to `loop', and added the following clauses:
73;; `elements', `frames', `overlays', `intervals', `buffers', `key-seqs'.
74;; * Renamed `delete' to `delete*' and `remove' to `remove*'.
75;; * Completed support for all keywords in `remove*', `substitute', etc.
76;; * Added `most-positive-float' and company.
77;; * Fixed hash tables to work with latest Lucid Emacs.
78;; * `proclaim' forms are no longer compile-time-evaluating; use `declaim'.
79;; * Syntax for `warn' declarations has changed.
80;; * Improved implementation of `random*'.
81;; * Moved most sequence functions to a new file, cl-seq.el.
82;; * Moved `eval-when' into cl-macs.el.
83;; * Moved `pushnew' and `adjoin' to cl.el for most common cases.
84;; * Moved `provide' forms down to ends of files.
85;; * Changed expansion of `pop' to something that compiles to better code.
86;; * Changed so that no patch is required for Emacs 19 byte compiler.
87;; * Made more things dependent on `optimize' declarations.
88;; * Added a partial implementation of struct print functions.
89;; * Miscellaneous minor changes.
90
91;; Version 2.00:
92;; * First public release of this package.
93
94
95;; Code:
96
97(defvar cl-emacs-type (cond ((or (and (fboundp 'epoch::version)
98 (symbol-value 'epoch::version))
99 (string-lessp emacs-version "19")) 18)
100 ((string-match "Lucid" emacs-version) 'lucid)
101 (t 19)))
102
103(or (fboundp 'defalias) (fset 'defalias 'fset))
104
105(defvar cl-optimize-speed 1)
106(defvar cl-optimize-safety 1)
107
108
109;;; Keywords used in this package.
110
111(defconst :test ':test)
112(defconst :test-not ':test-not)
113(defconst :key ':key)
114(defconst :start ':start)
115(defconst :start1 ':start1)
116(defconst :start2 ':start2)
117(defconst :end ':end)
118(defconst :end1 ':end1)
119(defconst :end2 ':end2)
120(defconst :count ':count)
121(defconst :initial-value ':initial-value)
122(defconst :size ':size)
123(defconst :from-end ':from-end)
124(defconst :rehash-size ':rehash-size)
125(defconst :rehash-threshold ':rehash-threshold)
126(defconst :allow-other-keys ':allow-other-keys)
127
128
129(defvar custom-print-functions nil
130 "This is a list of functions that format user objects for printing.
131Each function is called in turn with three arguments: the object, the
132stream, and the print level (currently ignored). If it is able to
133print the object it returns true; otherwise it returns nil and the
134printer proceeds to the next function on the list.
135
136This variable is not used at present, but it is defined in hopes that
137a future Emacs interpreter will be able to use it.")
138
139
140;;; Predicates.
141
142(defun eql (a b) ; See compiler macro in cl-macs.el
143 "T if the two args are the same Lisp object.
144Floating-point numbers of equal value are `eql', but they may not be `eq'."
145 (if (numberp a)
146 (equal a b)
147 (eq a b)))
148
149
150;;; Generalized variables. These macros are defined here so that they
151;;; can safely be used in .emacs files.
152
153(defmacro incf (place &optional x)
154 "(incf PLACE [X]): increment PLACE by X (1 by default).
155PLACE may be a symbol, or any generalized variable allowed by `setf'.
156The return value is the incremented value of PLACE."
157 (if (symbolp place)
158 (list 'setq place (if x (list '+ place x) (list '1+ place)))
159 (list 'callf '+ place (or x 1))))
160
161(defmacro decf (place &optional x)
162 "(decf PLACE [X]): decrement PLACE by X (1 by default).
163PLACE may be a symbol, or any generalized variable allowed by `setf'.
164The return value is the decremented value of PLACE."
165 (if (symbolp place)
166 (list 'setq place (if x (list '- place x) (list '1- place)))
167 (list 'callf '- place (or x 1))))
168
169(defmacro pop (place)
170 "(pop PLACE): remove and return the head of the list stored in PLACE.
171Analogous to (prog1 (car PLACE) (setf PLACE (cdr PLACE))), though more
172careful about evaluating each argument only once and in the right order.
173PLACE may be a symbol, or any generalized variable allowed by `setf'."
174 (if (symbolp place)
175 (list 'car (list 'prog1 place (list 'setq place (list 'cdr place))))
176 (cl-do-pop place)))
177
178(defmacro push (x place)
179 "(push X PLACE): insert X at the head of the list stored in PLACE.
180Analogous to (setf PLACE (cons X PLACE)), though more careful about
181evaluating each argument only once and in the right order. PLACE may
182be a symbol, or any generalized variable allowed by `setf'."
183 (if (symbolp place) (list 'setq place (list 'cons x place))
184 (list 'callf2 'cons x place)))
185
186(defmacro pushnew (x place &rest keys)
187 "(pushnew X PLACE): insert X at the head of the list if not already there.
188Like (push X PLACE), except that the list is unmodified if X is `eql' to
189an element already on the list.
190Keywords supported: :test :test-not :key"
191 (if (symbolp place) (list 'setq place (list* 'adjoin x place keys))
192 (list* 'callf2 'adjoin x place keys)))
193
194(defun cl-set-elt (seq n val)
195 (if (listp seq) (setcar (nthcdr n seq) val) (aset seq n val)))
196
197(defun cl-set-nthcdr (n list x)
198 (if (<= n 0) x (setcdr (nthcdr (1- n) list) x) list))
199
200(defun cl-set-buffer-substring (start end val)
201 (save-excursion (delete-region start end)
202 (goto-char start)
203 (insert val)
204 val))
205
206(defun cl-set-substring (str start end val)
207 (if end (if (< end 0) (incf end (length str)))
208 (setq end (length str)))
209 (if (< start 0) (incf start str))
210 (concat (and (> start 0) (substring str 0 start))
211 val
212 (and (< end (length str)) (substring str end))))
213
214
215;;; Control structures.
216
217;;; These macros are so simple and so often-used that it's better to have
218;;; them all the time than to load them from cl-macs.el.
219
220(defmacro when (cond &rest body)
221 "(when COND BODY...): if COND yields non-nil, do BODY, else return nil."
222 (list 'if cond (cons 'progn body)))
223
224(defmacro unless (cond &rest body)
225 "(unless COND BODY...): if COND yields nil, do BODY, else return nil."
226 (cons 'if (cons cond (cons nil body))))
227
228(defun cl-map-extents (&rest cl-args)
229 (if (fboundp 'next-overlay-at) (apply 'cl-map-overlays cl-args)
230 (if (fboundp 'map-extents) (apply 'map-extents cl-args))))
231
232
233;;; Blocks and exits.
234
235(defalias 'cl-block-wrapper 'identity)
236(defalias 'cl-block-throw 'throw)
237
238
239;;; Multiple values. True multiple values are not supported, or even
240;;; simulated. Instead, multiple-value-bind and friends simply expect
241;;; the target form to return the values as a list.
242
243(defalias 'values 'list)
244(defalias 'values-list 'identity)
245(defalias 'multiple-value-list 'identity)
246(defalias 'multiple-value-call 'apply) ; only works for one arg
247(defalias 'nth-value 'nth)
248
249
250;;; Macros.
251
252(defvar cl-macro-environment nil)
253(defvar cl-old-macroexpand (prog1 (symbol-function 'macroexpand)
254 (defalias 'macroexpand 'cl-macroexpand)))
255
256(defun cl-macroexpand (cl-macro &optional cl-env)
257 (let ((cl-macro-environment cl-env))
258 (while (progn (setq cl-macro (funcall cl-old-macroexpand cl-macro cl-env))
259 (and (symbolp cl-macro)
260 (cdr (assq (symbol-name cl-macro) cl-env))))
261 (setq cl-macro (cadr (assq (symbol-name cl-macro) cl-env))))
262 cl-macro))
263
264
265;;; Declarations.
266
267(defvar cl-compiling-file nil)
268(defun cl-compiling-file ()
269 (or cl-compiling-file
270 (and (boundp 'outbuffer) (bufferp (symbol-value 'outbuffer))
271 (equal (buffer-name (symbol-value 'outbuffer))
272 " *Compiler Output*"))))
273
274(defvar cl-proclaims-deferred nil)
275
276(defun proclaim (spec)
277 (if (fboundp 'cl-do-proclaim) (cl-do-proclaim spec t)
278 (push spec cl-proclaims-deferred))
279 nil)
280
281(defmacro declaim (&rest specs)
282 (let ((body (mapcar (function (lambda (x) (list 'proclaim (list 'quote x))))
283 specs)))
284 (if (cl-compiling-file) (list* 'eval-when '(compile load eval) body)
285 (cons 'progn body)))) ; avoid loading cl-macs.el for eval-when
286
287
288;;; Symbols.
289
290(defun cl-random-time ()
291 (let* ((time (copy-sequence (current-time-string))) (i (length time)) (v 0))
292 (while (>= (decf i) 0) (setq v (+ (* v 3) (aref time i))))
293 v))
294
295(defvar *gensym-counter* (* (logand (cl-random-time) 1023) 100))
296
297
298;;; Numbers.
299
300(defun floatp-safe (x)
301 "T if OBJECT is a floating point number.
302On Emacs versions that lack floating-point support, this function
303always returns nil."
304 (and (numberp x) (not (integerp x))))
305
306(defun plusp (x)
307 "T if NUMBER is positive."
308 (> x 0))
309
310(defun minusp (x)
311 "T if NUMBER is negative."
312 (< x 0))
313
314(defun oddp (x)
315 "T if INTEGER is odd."
316 (eq (logand x 1) 1))
317
318(defun evenp (x)
319 "T if INTEGER is even."
320 (eq (logand x 1) 0))
321
322(defun cl-abs (x)
323 "Return the absolute value of ARG."
324 (if (>= x 0) x (- x)))
325(or (fboundp 'abs) (defalias 'abs 'cl-abs)) ; This is built-in to Emacs 19
326
327(defvar *random-state* (vector 'cl-random-state-tag -1 30 (cl-random-time)))
328
329;;; We use `eval' in case VALBITS differs from compile-time to load-time.
330(defconst most-positive-fixnum (eval '(lsh -1 -1)))
331(defconst most-negative-fixnum (eval '(- -1 (lsh -1 -1))))
332
333;;; The following are actually set by cl-float-limits.
334(defconst most-positive-float nil)
335(defconst most-negative-float nil)
336(defconst least-positive-float nil)
337(defconst least-negative-float nil)
338(defconst least-positive-normalized-float nil)
339(defconst least-negative-normalized-float nil)
340(defconst float-epsilon nil)
341(defconst float-negative-epsilon nil)
342
343
344;;; Sequence functions.
345
346(defalias 'copy-seq 'copy-sequence)
347
348(defun mapcar* (cl-func cl-x &rest cl-rest)
349 "Apply FUNCTION to each element of SEQ, and make a list of the results.
350If there are several SEQs, FUNCTION is called with that many arguments,
351and mapping stops as soon as the shortest list runs out. With just one
352SEQ, this is like `mapcar'. With several, it is like the Common Lisp
353`mapcar' function extended to arbitrary sequence types."
354 (if cl-rest
355 (if (or (cdr cl-rest) (nlistp cl-x) (nlistp (car cl-rest)))
356 (cl-mapcar-many cl-func (cons cl-x cl-rest))
357 (let ((cl-res nil) (cl-y (car cl-rest)))
358 (while (and cl-x cl-y)
359 (push (funcall cl-func (pop cl-x) (pop cl-y)) cl-res))
360 (nreverse cl-res)))
361 (mapcar cl-func cl-x)))
362
363
364;;; List functions.
365
366(defalias 'first 'car)
367(defalias 'rest 'cdr)
368(defalias 'endp 'null)
369
370(defun second (x)
371 "Return the second element of the list LIST."
372 (car (cdr x)))
373
374(defun third (x)
375 "Return the third element of the list LIST."
376 (car (cdr (cdr x))))
377
378(defun fourth (x)
379 "Return the fourth element of the list LIST."
380 (nth 3 x))
381
382(defun fifth (x)
383 "Return the fifth element of the list LIST."
384 (nth 4 x))
385
386(defun sixth (x)
387 "Return the sixth element of the list LIST."
388 (nth 5 x))
389
390(defun seventh (x)
391 "Return the seventh element of the list LIST."
392 (nth 6 x))
393
394(defun eighth (x)
395 "Return the eighth element of the list LIST."
396 (nth 7 x))
397
398(defun ninth (x)
399 "Return the ninth element of the list LIST."
400 (nth 8 x))
401
402(defun tenth (x)
403 "Return the tenth element of the list LIST."
404 (nth 9 x))
405
406(defun caar (x)
407 "Return the `car' of the `car' of X."
408 (car (car x)))
409
410(defun cadr (x)
411 "Return the `car' of the `cdr' of X."
412 (car (cdr x)))
413
414(defun cdar (x)
415 "Return the `cdr' of the `car' of X."
416 (cdr (car x)))
417
418(defun cddr (x)
419 "Return the `cdr' of the `cdr' of X."
420 (cdr (cdr x)))
421
422(defun caaar (x)
423 "Return the `car' of the `car' of the `car' of X."
424 (car (car (car x))))
425
426(defun caadr (x)
427 "Return the `car' of the `car' of the `cdr' of X."
428 (car (car (cdr x))))
429
430(defun cadar (x)
431 "Return the `car' of the `cdr' of the `car' of X."
432 (car (cdr (car x))))
433
434(defun caddr (x)
435 "Return the `car' of the `cdr' of the `cdr' of X."
436 (car (cdr (cdr x))))
437
438(defun cdaar (x)
439 "Return the `cdr' of the `car' of the `car' of X."
440 (cdr (car (car x))))
441
442(defun cdadr (x)
443 "Return the `cdr' of the `car' of the `cdr' of X."
444 (cdr (car (cdr x))))
445
446(defun cddar (x)
447 "Return the `cdr' of the `cdr' of the `car' of X."
448 (cdr (cdr (car x))))
449
450(defun cdddr (x)
451 "Return the `cdr' of the `cdr' of the `cdr' of X."
452 (cdr (cdr (cdr x))))
453
454(defun caaaar (x)
455 "Return the `car' of the `car' of the `car' of the `car' of X."
456 (car (car (car (car x)))))
457
458(defun caaadr (x)
459 "Return the `car' of the `car' of the `car' of the `cdr' of X."
460 (car (car (car (cdr x)))))
461
462(defun caadar (x)
463 "Return the `car' of the `car' of the `cdr' of the `car' of X."
464 (car (car (cdr (car x)))))
465
466(defun caaddr (x)
467 "Return the `car' of the `car' of the `cdr' of the `cdr' of X."
468 (car (car (cdr (cdr x)))))
469
470(defun cadaar (x)
471 "Return the `car' of the `cdr' of the `car' of the `car' of X."
472 (car (cdr (car (car x)))))
473
474(defun cadadr (x)
475 "Return the `car' of the `cdr' of the `car' of the `cdr' of X."
476 (car (cdr (car (cdr x)))))
477
478(defun caddar (x)
479 "Return the `car' of the `cdr' of the `cdr' of the `car' of X."
480 (car (cdr (cdr (car x)))))
481
482(defun cadddr (x)
483 "Return the `car' of the `cdr' of the `cdr' of the `cdr' of X."
484 (car (cdr (cdr (cdr x)))))
485
486(defun cdaaar (x)
487 "Return the `cdr' of the `car' of the `car' of the `car' of X."
488 (cdr (car (car (car x)))))
489
490(defun cdaadr (x)
491 "Return the `cdr' of the `car' of the `car' of the `cdr' of X."
492 (cdr (car (car (cdr x)))))
493
494(defun cdadar (x)
495 "Return the `cdr' of the `car' of the `cdr' of the `car' of X."
496 (cdr (car (cdr (car x)))))
497
498(defun cdaddr (x)
499 "Return the `cdr' of the `car' of the `cdr' of the `cdr' of X."
500 (cdr (car (cdr (cdr x)))))
501
502(defun cddaar (x)
503 "Return the `cdr' of the `cdr' of the `car' of the `car' of X."
504 (cdr (cdr (car (car x)))))
505
506(defun cddadr (x)
507 "Return the `cdr' of the `cdr' of the `car' of the `cdr' of X."
508 (cdr (cdr (car (cdr x)))))
509
510(defun cdddar (x)
511 "Return the `cdr' of the `cdr' of the `cdr' of the `car' of X."
512 (cdr (cdr (cdr (car x)))))
513
514(defun cddddr (x)
515 "Return the `cdr' of the `cdr' of the `cdr' of the `cdr' of X."
516 (cdr (cdr (cdr (cdr x)))))
517
518(defun last (x &optional n)
519 "Returns the last link in the list LIST.
520With optional argument N, returns Nth-to-last link (default 1)."
521 (if n
522 (let ((m 0) (p x))
523 (while (consp p) (incf m) (pop p))
524 (if (<= n 0) p
525 (if (< n m) (nthcdr (- m n) x) x)))
526 (while (consp (cdr x)) (pop x))
527 x))
528
529(defun butlast (x &optional n)
530 "Returns a copy of LIST with the last N elements removed."
531 (if (and n (<= n 0)) x
532 (nbutlast (copy-sequence x) n)))
533
534(defun nbutlast (x &optional n)
535 "Modifies LIST to remove the last N elements."
536 (let ((m (length x)))
537 (or n (setq n 1))
538 (and (< n m)
539 (progn
540 (if (> n 0) (setcdr (nthcdr (- (1- m) n) x) nil))
541 x))))
542
543(defun list* (arg &rest rest) ; See compiler macro in cl-macs.el
544 "Return a new list with specified args as elements, cons'd to last arg.
545Thus, `(list* A B C D)' is equivalent to `(nconc (list A B C) D)', or to
546`(cons A (cons B (cons C D)))'."
547 (cond ((not rest) arg)
548 ((not (cdr rest)) (cons arg (car rest)))
549 (t (let* ((n (length rest))
550 (copy (copy-sequence rest))
551 (last (nthcdr (- n 2) copy)))
552 (setcdr last (car (cdr last)))
553 (cons arg copy)))))
554
555(defun ldiff (list sublist)
556 "Return a copy of LIST with the tail SUBLIST removed."
557 (let ((res nil))
558 (while (and (consp list) (not (eq list sublist)))
559 (push (pop list) res))
560 (nreverse res)))
561
562(defun copy-list (list)
563 "Return a copy of a list, which may be a dotted list.
564The elements of the list are not copied, just the list structure itself."
565 (if (consp list)
566 (let ((res nil))
567 (while (consp list) (push (pop list) res))
568 (prog1 (nreverse res) (setcdr res list)))
569 (car list)))
570
571(defun cl-maclisp-member (item list)
572 (while (and list (not (equal item (car list)))) (setq list (cdr list)))
573 list)
574
575;;; Define an Emacs 19-compatible `member' for the benefit of Emacs 18 users.
576(or (and (fboundp 'member) (subrp (symbol-function 'member)))
577 (defalias 'member 'cl-maclisp-member))
578
579(defalias 'cl-member 'memq) ; for compatibility with old CL package
580(defalias 'cl-floor 'floor*)
581(defalias 'cl-ceiling 'ceiling*)
582(defalias 'cl-truncate 'truncate*)
583(defalias 'cl-round 'round*)
584(defalias 'cl-mod 'mod*)
585
586(defun adjoin (cl-item cl-list &rest cl-keys) ; See compiler macro in cl-macs
587 "Return ITEM consed onto the front of LIST only if it's not already there.
588Otherwise, return LIST unmodified.
589Keywords supported: :test :test-not :key"
590 (cond ((or (equal cl-keys '(:test eq))
591 (and (null cl-keys) (not (numberp cl-item))))
592 (if (memq cl-item cl-list) cl-list (cons cl-item cl-list)))
593 ((or (equal cl-keys '(:test equal)) (null cl-keys))
594 (if (member cl-item cl-list) cl-list (cons cl-item cl-list)))
595 (t (apply 'cl-adjoin cl-item cl-list cl-keys))))
596
597(defun subst (cl-new cl-old cl-tree &rest cl-keys)
598 "Substitute NEW for OLD everywhere in TREE (non-destructively).
599Return a copy of TREE with all elements `eql' to OLD replaced by NEW.
600Keywords supported: :test :test-not :key"
601 (if (or cl-keys (and (numberp cl-old) (not (integerp cl-old))))
602 (apply 'sublis (list (cons cl-old cl-new)) cl-tree cl-keys)
603 (cl-do-subst cl-new cl-old cl-tree)))
604
605(defun cl-do-subst (cl-new cl-old cl-tree)
606 (cond ((eq cl-tree cl-old) cl-new)
607 ((consp cl-tree)
608 (let ((a (cl-do-subst cl-new cl-old (car cl-tree)))
609 (d (cl-do-subst cl-new cl-old (cdr cl-tree))))
610 (if (and (eq a (car cl-tree)) (eq d (cdr cl-tree)))
611 cl-tree (cons a d))))
612 (t cl-tree)))
613
614(defun acons (a b c) (cons (cons a b) c))
615(defun pairlis (a b &optional c) (nconc (mapcar* 'cons a b) c))
616
617
618;;; Miscellaneous.
619
620(put 'cl-assertion-failed 'error-conditions '(error))
621(put 'cl-assertion-failed 'error-message "Assertion failed")
622
623;;; This is defined in Emacs 19; define it here for Emacs 18 users.
624(defun cl-add-hook (hook func &optional append)
625 "Add to hook variable HOOK the function FUNC.
626FUNC is not added if it already appears on the list stored in HOOK."
627 (let ((old (and (boundp hook) (symbol-value hook))))
628 (and (listp old) (not (eq (car old) 'lambda))
629 (setq old (list old)))
630 (and (not (member func old))
631 (set hook (if append (nconc old (list func)) (cons func old))))))
632(or (fboundp 'add-hook) (defalias 'add-hook 'cl-add-hook))
633
634
635;;; Autoload the other portions of the package.
636(mapcar (function
637 (lambda (set)
638 (mapcar (function
639 (lambda (func)
640 (autoload func (car set) nil nil (nth 1 set))))
641 (cddr set))))
642 '(("cl-extra" nil
643 coerce equalp cl-map-keymap maplist mapc mapl mapcan mapcon
644 cl-map-keymap cl-map-keymap-recursively cl-map-intervals
645 cl-map-overlays cl-set-frame-visible-p cl-float-limits
646 gcd lcm isqrt expt floor* ceiling* truncate* round*
647 mod* rem* signum random* make-random-state random-state-p
648 subseq concatenate cl-mapcar-many map some every notany
649 notevery revappend nreconc list-length tailp copy-tree get* getf
650 cl-set-getf cl-do-remf remprop make-hash-table cl-hash-lookup
651 gethash cl-puthash remhash clrhash maphash hash-table-p
652 hash-table-count cl-progv-before cl-prettyexpand
653 cl-macroexpand-all)
654 ("cl-seq" nil
655 reduce fill replace remq remove remove* remove-if remove-if-not
656 delete delete* delete-if delete-if-not remove-duplicates
657 delete-duplicates substitute substitute-if substitute-if-not
658 nsubstitute nsubstitute-if nsubstitute-if-not find find-if
659 find-if-not position position-if position-if-not count count-if
660 count-if-not mismatch search sort* stable-sort merge member*
661 member-if member-if-not cl-adjoin assoc* assoc-if assoc-if-not
662 rassoc* rassoc rassoc-if rassoc-if-not union nunion intersection
663 nintersection set-difference nset-difference set-exclusive-or
664 nset-exclusive-or subsetp subst-if subst-if-not nsubst nsubst-if
665 nsubst-if-not sublis nsublis tree-equal)
666 ("cl-macs" nil
667 gensym gentemp typep cl-do-pop get-setf-method
668 cl-struct-setf-expander compiler-macroexpand cl-compile-time-init)
669 ("cl-macs" t
670 defun* defmacro* function* destructuring-bind eval-when
671 eval-when-compile load-time-value case ecase typecase etypecase
672 block return return-from loop do do* dolist dotimes do-symbols
673 do-all-symbols psetq progv flet labels macrolet symbol-macrolet
674 lexical-let lexical-let* multiple-value-bind multiple-value-setq
675 locally the declare define-setf-method defsetf define-modify-macro
676 setf psetf remf shiftf rotatef letf letf* callf callf2 defstruct
677 check-type assert ignore-errors define-compiler-macro)))
678
679;;; Define data for indentation and edebug.
680(mapcar (function
681 (lambda (entry)
682 (mapcar (function
683 (lambda (func)
684 (put func 'lisp-indent-function (nth 1 entry))
685 (put func 'lisp-indent-hook (nth 1 entry))
686 (or (get func 'edebug-form-spec)
687 (put func 'edebug-form-spec (nth 2 entry)))))
688 (car entry))))
689 '(((defun* defmacro*) 2)
690 ((function*) nil
691 (&or symbolp ([&optional 'macro] 'lambda (&rest sexp) &rest form)))
692 ((eval-when) 1 (sexp &rest form))
693 ((when unless) 1 (&rest form))
694 ((declare) nil (&rest sexp))
695 ((the) 1 (sexp &rest form))
696 ((case ecase typecase etypecase) 1 (form &rest (sexp &rest form)))
697 ((block return-from) 1 (sexp &rest form))
698 ((return) nil (&optional form))
699 ((do do*) 2 ((&rest &or symbolp (symbolp &optional form form))
700 (form &rest form)
701 &rest form))
702 ((dolist dotimes) 1 ((symbolp form &rest form) &rest form))
703 ((do-symbols) 1 ((symbolp form &optional form form) &rest form))
704 ((do-all-symbols) 1 ((symbolp form &optional form) &rest form))
705 ((psetq setf psetf) nil edebug-setq-form)
706 ((progv) 2 (&rest form))
707 ((flet labels macrolet) 1
708 ((&rest (sexp sexp &rest form)) &rest form))
709 ((symbol-macrolet lexical-let lexical-let*) 1
710 ((&rest &or symbolp (symbolp form)) &rest form))
711 ((multiple-value-bind) 2 ((&rest symbolp) &rest form))
712 ((multiple-value-setq) 1 ((&rest symbolp) &rest form))
713 ((incf decf remf pop push pushnew shiftf rotatef) nil (&rest form))
714 ((letf letf*) 1 ((&rest (&rest form)) &rest form))
715 ((callf destructuring-bind) 2 (sexp form &rest form))
716 ((callf2) 3 (sexp form form &rest form))
717 ((loop) nil (&rest &or symbolp form))
718 ((ignore-errors) 0 (&rest form))))
719
720
721;;; This goes here so that cl-macs can find it if it loads right now.
722(provide 'cl-19) ; usage: (require 'cl-19 "cl")
723
724
725;;; Things to do after byte-compiler is loaded.
726;;; As a side effect, we cause cl-macs to be loaded when compiling, so
727;;; that the compiler-macros defined there will be present.
728
729(defvar cl-hacked-flag nil)
730(defun cl-hack-byte-compiler ()
731 (if (and (not cl-hacked-flag) (fboundp 'byte-compile-file-form))
732 (progn
733 (cl-compile-time-init) ; in cl-macs.el
734 (setq cl-hacked-flag t))))
735
736;;; Try it now in case the compiler has already been loaded.
737(cl-hack-byte-compiler)
738
739;;; Also make a hook in case compiler is loaded after this file.
740;;; The compiler doesn't call any hooks when it loads or runs, but
741;;; we can take advantage of the fact that emacs-lisp-mode will be
742;;; called when the compiler reads in the file to be compiled.
743;;; BUG: If the first compilation is `byte-compile' rather than
744;;; `byte-compile-file', we lose. Oh, well.
745(add-hook 'emacs-lisp-mode-hook 'cl-hack-byte-compiler)
746
747
748;;; The following ensures that packages which expect the old-style cl.el
749;;; will be happy with this one.
750
751(provide 'cl)
752
753(provide 'mini-cl) ; for Epoch
754
755(run-hooks 'cl-load-hook)
756
757;;; cl.el ends here