aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRichard M. Stallman1994-03-16 05:25:03 +0000
committerRichard M. Stallman1994-03-16 05:25:03 +0000
commit4672ee8f4cdf15d366b410c0c7205ad8cd2619e6 (patch)
tree53336f52f6d8dc74eb255e6c02552dac3f5919e3
parentfa8a9f302c77dce7b6e2a13e90745d4fefe3fac8 (diff)
downloademacs-4672ee8f4cdf15d366b410c0c7205ad8cd2619e6.tar.gz
emacs-4672ee8f4cdf15d366b410c0c7205ad8cd2619e6.zip
Initial revision
-rw-r--r--lispref/sequences.texi484
1 files changed, 484 insertions, 0 deletions
diff --git a/lispref/sequences.texi b/lispref/sequences.texi
new file mode 100644
index 00000000000..153975947b9
--- /dev/null
+++ b/lispref/sequences.texi
@@ -0,0 +1,484 @@
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
3@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
4@c See the file elisp.texi for copying conditions.
5@setfilename ../info/sequences
6@node Sequences Arrays Vectors, Symbols, Lists, Top
7@chapter Sequences, Arrays, and Vectors
8@cindex sequence
9
10 Recall that the @dfn{sequence} type is the union of three other Lisp
11types: lists, vectors, and strings. In other words, any list is a
12sequence, any vector is a sequence, and any string is a sequence. The
13common property that all sequences have is that each is an ordered
14collection of elements.
15
16 An @dfn{array} is a single primitive object directly containing all
17its elements. Therefore, all the elements are accessible in constant
18time. The length of an existing array cannot be changed. Both strings
19and vectors are arrays. A list is a sequence of elements, but it is not
20a single primitive object; it is made of cons cells, one cell per
21element. Therefore, elements farther from the beginning of the list
22take longer to access, but it is possible to add elements to the list or
23remove elements.
24
25 The following diagram shows the relationship between these types:
26
27@example
28@group
29 ___________________________________
30 | |
31 | Sequence |
32 | ______ ______________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ _______ | |
36 | |______| | | | | | | |
37 | | | String | | Vector| | |
38 | | |________| |_______| | |
39 | |______________________| |
40 |___________________________________|
41
42@center @r{The relationship between sequences, arrays, and vectors}
43@end group
44@end example
45
46 The elements of vectors and lists may be any Lisp objects. The
47elements of strings are all characters.
48
49@menu
50* Sequence Functions:: Functions that accept any kind of sequence.
51* Arrays:: Characteristics of arrays in Emacs Lisp.
52* Array Functions:: Functions specifically for arrays.
53* Vectors:: Functions specifically for vectors.
54@end menu
55
56@node Sequence Functions
57@section Sequences
58
59 In Emacs Lisp, a @dfn{sequence} is either a list, a vector or a
60string. The common property that all sequences have is that each is an
61ordered collection of elements. This section describes functions that
62accept any kind of sequence.
63
64@defun sequencep object
65Returns @code{t} if @var{object} is a list, vector, or
66string, @code{nil} otherwise.
67@end defun
68
69@defun copy-sequence sequence
70@cindex copying sequences
71Returns a copy of @var{sequence}. The copy is the same type of object
72as the original sequence, and it has the same elements in the same order.
73
74Storing a new element into the copy does not affect the original
75@var{sequence}, and vice versa. However, the elements of the new
76sequence are not copies; they are identical (@code{eq}) to the elements
77of the original. Therefore, changes made within these elements, as
78found via the copied sequence, are also visible in the original
79sequence.
80
81If the sequence is a string with text properties, the property list in
82the copy is itself a copy, not shared with the original's property
83list. However, the actual values of the properties are shared.
84@xref{Text Properties}.
85
86See also @code{append} in @ref{Building Lists}, @code{concat} in
87@ref{Creating Strings}, and @code{vconcat} in @ref{Vectors}, for others
88ways to copy sequences.
89
90@example
91@group
92(setq bar '(1 2))
93 @result{} (1 2)
94@end group
95@group
96(setq x (vector 'foo bar))
97 @result{} [foo (1 2)]
98@end group
99@group
100(setq y (copy-sequence x))
101 @result{} [foo (1 2)]
102@end group
103
104@group
105(eq x y)
106 @result{} nil
107@end group
108@group
109(equal x y)
110 @result{} t
111@end group
112@group
113(eq (elt x 1) (elt y 1))
114 @result{} t
115@end group
116
117@group
118;; @r{Replacing an element of one sequence.}
119(aset x 0 'quux)
120x @result{} [quux (1 2)]
121y @result{} [foo (1 2)]
122@end group
123
124@group
125;; @r{Modifying the inside of a shared element.}
126(setcar (aref x 1) 69)
127x @result{} [quux (69 2)]
128y @result{} [foo (69 2)]
129@end group
130@end example
131@end defun
132
133@defun length sequence
134@cindex string length
135@cindex list length
136@cindex vector length
137@cindex sequence length
138Returns the number of elements in @var{sequence}. If @var{sequence} is
139a cons cell that is not a list (because the final @sc{cdr} is not
140@code{nil}), a @code{wrong-type-argument} error is signaled.
141
142@example
143@group
144(length '(1 2 3))
145 @result{} 3
146@end group
147@group
148(length ())
149 @result{} 0
150@end group
151@group
152(length "foobar")
153 @result{} 6
154@end group
155@group
156(length [1 2 3])
157 @result{} 3
158@end group
159@end example
160@end defun
161
162@defun elt sequence index
163@cindex elements of sequences
164This function returns the element of @var{sequence} indexed by
165@var{index}. Legitimate values of @var{index} are integers ranging from
1660 up to one less than the length of @var{sequence}. If @var{sequence}
167is a list, then out-of-range values of @var{index} return @code{nil};
168otherwise, they trigger an @code{args-out-of-range} error.
169
170@example
171@group
172(elt [1 2 3 4] 2)
173 @result{} 3
174@end group
175@group
176(elt '(1 2 3 4) 2)
177 @result{} 3
178@end group
179@group
180(char-to-string (elt "1234" 2))
181 @result{} "3"
182@end group
183@group
184(elt [1 2 3 4] 4)
185 @error{}Args out of range: [1 2 3 4], 4
186@end group
187@group
188(elt [1 2 3 4] -1)
189 @error{}Args out of range: [1 2 3 4], -1
190@end group
191@end example
192
193This function duplicates @code{aref} (@pxref{Array Functions}) and
194@code{nth} (@pxref{List Elements}), except that it works for any kind of
195sequence.
196@end defun
197
198@node Arrays
199@section Arrays
200@cindex array
201
202 An @dfn{array} object refers directly to a number of other Lisp
203objects, called the elements of the array. Any element of an array may
204be accessed in constant time. In contrast, an element of a list
205requires access time that is proportional to the position of the element
206in the list.
207
208 When you create an array, you must specify how many elements it has.
209The amount of space allocated depends on the number of elements.
210Therefore, it is impossible to change the size of an array once it is
211created. You cannot add or remove elements. However, you can replace
212an element with a different value.
213
214 Emacs defines two types of array, both of which are one-dimensional:
215@dfn{strings} and @dfn{vectors}. A vector is a general array; its
216elements can be any Lisp objects. A string is a specialized array; its
217elements must be characters (i.e., integers between 0 and 255). Each
218type of array has its own read syntax. @xref{String Type}, and
219@ref{Vector Type}.
220
221 Both kinds of arrays share these characteristics:
222
223@itemize @bullet
224@item
225The first element of an array has index zero, the second element has
226index 1, and so on. This is called @dfn{zero-origin} indexing. For
227example, an array of four elements has indices 0, 1, 2, @w{and 3}.
228
229@item
230The elements of an array may be referenced or changed with the functions
231@code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
232@end itemize
233
234 In principle, if you wish to have an array of characters, you could use
235either a string or a vector. In practice, we always choose strings for
236such applications, for four reasons:
237
238@itemize @bullet
239@item
240They occupy one-fourth the space of a vector of the same elements.
241
242@item
243Strings are printed in a way that shows the contents more clearly
244as characters.
245
246@item
247Strings can hold text properties. @xref{Text Properties}.
248
249@item
250Many of the specialized editing and I/O facilities of Emacs accept only
251strings. For example, you cannot insert a vector of characters into a
252buffer the way you can insert a string. @xref{Strings and Characters}.
253@end itemize
254
255@node Array Functions
256@section Functions that Operate on Arrays
257
258 In this section, we describe the functions that accept both strings
259and vectors.
260
261@defun arrayp object
262This function returns @code{t} if @var{object} is an array (i.e., either a
263vector or a string).
264
265@example
266@group
267(arrayp [a])
268@result{} t
269(arrayp "asdf")
270@result{} t
271@end group
272@end example
273@end defun
274
275@defun aref array index
276@cindex array elements
277This function returns the @var{index}th element of @var{array}. The
278first element is at index zero.
279
280@example
281@group
282(setq primes [2 3 5 7 11 13])
283 @result{} [2 3 5 7 11 13]
284(aref primes 4)
285 @result{} 11
286(elt primes 4)
287 @result{} 11
288@end group
289
290@group
291(aref "abcdefg" 1)
292 @result{} 98 ; @r{@samp{b} is @sc{ASCII} code 98.}
293@end group
294@end example
295
296See also the function @code{elt}, in @ref{Sequence Functions}.
297@end defun
298
299@defun aset array index object
300This function sets the @var{index}th element of @var{array} to be
301@var{object}. It returns @var{object}.
302
303@example
304@group
305(setq w [foo bar baz])
306 @result{} [foo bar baz]
307(aset w 0 'fu)
308 @result{} fu
309w
310 @result{} [fu bar baz]
311@end group
312
313@group
314(setq x "asdfasfd")
315 @result{} "asdfasfd"
316(aset x 3 ?Z)
317 @result{} 90
318x
319 @result{} "asdZasfd"
320@end group
321@end example
322
323If @var{array} is a string and @var{object} is not a character, a
324@code{wrong-type-argument} error results.
325@end defun
326
327@defun fillarray array object
328This function fills the array @var{array} with pointers to @var{object},
329replacing any previous values. It returns @var{array}.
330
331@example
332@group
333(setq a [a b c d e f g])
334 @result{} [a b c d e f g]
335(fillarray a 0)
336 @result{} [0 0 0 0 0 0 0]
337a
338 @result{} [0 0 0 0 0 0 0]
339@end group
340@group
341(setq s "When in the course")
342 @result{} "When in the course"
343(fillarray s ?-)
344 @result{} "------------------"
345@end group
346@end example
347
348If @var{array} is a string and @var{object} is not a character, a
349@code{wrong-type-argument} error results.
350@end defun
351
352The general sequence functions @code{copy-sequence} and @code{length}
353are often useful for objects known to be arrays. @xref{Sequence Functions}.
354
355@node Vectors
356@section Vectors
357@cindex vector
358
359 Arrays in Lisp, like arrays in most languages, are blocks of memory
360whose elements can be accessed in constant time. A @dfn{vector} is a
361general-purpose array; its elements can be any Lisp objects. (The other
362kind of array in Emacs Lisp is the @dfn{string}, whose elements must be
363characters.) Vectors in Emacs serve as syntax tables (vectors of
364integers), as obarrays (vectors of symbols), and in keymaps (vectors of
365commands). They are also used internally as part of the representation
366of a byte-compiled function; if you print such a function, you will see
367a vector in it.
368
369 In Emacs Lisp, the indices of the elements of a vector start from zero
370and count up from there.
371
372 Vectors are printed with square brackets surrounding the elements
373in their order. Thus, a vector containing the symbols @code{a},
374@code{b} and @code{c} is printed as @code{[a b c]}. You can write
375vectors in the same way in Lisp input.
376
377 A vector, like a string or a number, is considered a constant for
378evaluation: the result of evaluating it is the same vector. This does
379not evaluate or even examine the elements of the vector.
380@xref{Self-Evaluating Forms}.
381
382 Here are examples of these principles:
383
384@example
385@group
386(setq avector [1 two '(three) "four" [five]])
387 @result{} [1 two (quote (three)) "four" [five]]
388(eval avector)
389 @result{} [1 two (quote (three)) "four" [five]]
390(eq avector (eval avector))
391 @result{} t
392@end group
393@end example
394
395 Here are some functions that relate to vectors:
396
397@defun vectorp object
398This function returns @code{t} if @var{object} is a vector.
399
400@example
401@group
402(vectorp [a])
403 @result{} t
404(vectorp "asdf")
405 @result{} nil
406@end group
407@end example
408@end defun
409
410@defun vector &rest objects
411This function creates and returns a vector whose elements are the
412arguments, @var{objects}.
413
414@example
415@group
416(vector 'foo 23 [bar baz] "rats")
417 @result{} [foo 23 [bar baz] "rats"]
418(vector)
419 @result{} []
420@end group
421@end example
422@end defun
423
424@defun make-vector length object
425This function returns a new vector consisting of @var{length} elements,
426each initialized to @var{object}.
427
428@example
429@group
430(setq sleepy (make-vector 9 'Z))
431 @result{} [Z Z Z Z Z Z Z Z Z]
432@end group
433@end example
434@end defun
435
436@defun vconcat &rest sequences
437@cindex copying vectors
438This function returns a new vector containing all the elements of the
439@var{sequences}. The arguments @var{sequences} may be lists, vectors,
440or strings. If no @var{sequences} are given, an empty vector is
441returned.
442
443The value is a newly constructed vector that is not @code{eq} to any
444existing vector.
445
446@example
447@group
448(setq a (vconcat '(A B C) '(D E F)))
449 @result{} [A B C D E F]
450(eq a (vconcat a))
451 @result{} nil
452@end group
453@group
454(vconcat)
455 @result{} []
456(vconcat [A B C] "aa" '(foo (6 7)))
457 @result{} [A B C 97 97 foo (6 7)]
458@end group
459@end example
460
461When an argument is an integer (not a sequence of integers), it is
462converted to a string of digits making up the decimal printed
463representation of the integer. This special case exists for
464compatibility with Mocklisp, and we don't recommend you take advantage
465of it. If you want to convert an integer to digits in this way, use
466@code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
467(@pxref{String Conversion}).
468
469For other concatenation functions, see @code{mapconcat} in @ref{Mapping
470Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
471in @ref{Building Lists}.
472@end defun
473
474 The @code{append} function provides a way to convert a vector into a
475list with the same elements (@pxref{Building Lists}):
476
477@example
478@group
479(setq avector [1 two (quote (three)) "four" [five]])
480 @result{} [1 two (quote (three)) "four" [five]]
481(append avector nil)
482 @result{} (1 two (quote (three)) "four" [five])
483@end group
484@end example